
Today’s outline - February 22, 2022

• A word about hands-on component

• Distributed computation

• Quantum Fourier transform

• Quantum Fourier transform circuits

Reading Assignment: Chapter 8.1-8.2

Homework Assignment #05:
Chapter 7:1,3,4
due Thursday, March 03, 2022

Exam #1 Tuesday, March 01, 2022
Covers Chapters 2-5

Quantum circuit simulator https://algassert.com/quirk
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Distributed computation

Alice and Bob are each provided with an N = 2n bit number, u and v respectively

Alice must compute an n-bit number a and Bob must compute an n-bit number b such that

dH(u, v) = 0 −→ a = b
dH(u, v) = N/2 −→ a ̸= b

else −→ no condition on a and b

This is a challenging problem because u and v are exponentially larger than a and b

A classical solution requires a communication of at least N/2 bits but with enough entangled
pairs, no additional communication is needed in a quantum solution

Start with n entangled pairs of particles, (ai , bi ) in states 1√
2
(|00⟩+ |11⟩) with

a0, a1, . . . , an−1, b0, b1, . . . , bn−1 −→ |ψ⟩ = 1√
N

N−1∑
i=0

|i , i⟩
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Distributed computation

Alice uses the phase change subroutine with
f (i) = ui

N−1∑
i=0

|i⟩ −→
N−1∑
i=0

(−1)ui |i⟩

Bob uses the phase change subroutine with
f (i) = vi

N−1∑
i=0

|i⟩ −→
N−1∑
i=0

(−1)vi |i⟩

They each apply the Walsh transformation to get a common global state

|ψ⟩ = 1√
N

N−1∑
i=0

(−1)ui⊕vi (W |i⟩ ⊗W |i⟩) =
1

N
√
N

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

(−1)ui⊕vi (−1)i ·j(−1)i ·k |jk⟩

The probability that the measurement results in a = x = b is the modulus squared of ⟨x , x |ψ⟩

⟨x , x |ψ⟩ = 1

N
√
N

N−1∑
i=0

(−1)ui⊕vi (−1)i ·x(−1)i ·x =
1

N
√
N

N−1∑
i=0

(−1)ui⊕vi
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Distributed computation

The probability that Alice and Bob measure
the same n bit value, x , is given by

If u = v , then (−1)ui⊕vi = 1 so when
summed over the N possible values of x ,
Pxx = 1 and Alice and Bob will measure
a = b with probability 1

For dH(u, v) = N/2 there will be exactly the
same number of 1 and −1 values in the sum
so Pxx = 0 and Alice and Bob will measure
a = b with probability 0

Pxx = |⟨x , x |ψ⟩|2 =

∣∣∣∣∣ 1

N
√
N
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Discrete Fourier transform

The quantum Fourier transform is an important building block for many quantum algorithms

In order to develop the efficient implementation of the quantum Fourier transform, it is useful
to start with the classical discrete and fast Fourier transforms

The discrete Fourier transform (DFT) is a linear transforma-
tion which takes a discrete column vector a(k) to a column
vector of Fourier coefficients, A(x), where 0 ≤ k, x ≤ N−1

The DFT operator is an N × N matrix with elements

A(x) =
1√
N

N−1∑
k=0

a(k)e2πikx/N

Fxk = 1√
N
e2πikx/N

Assume a(k) = e−2πiuk/N is a function of frequency u < N which evenly divides N

Computing the Fourier coefficients,

A(x) =
1√
N

N−1∑
k=0

a(k)e2πikx/N =
1√
N

N−1∑
k=0

e−2πiuk/Ne2πikx/N =
1√
N

N−1∑
k=0

e2πik(x−u)/N

All are zero except for when x − u = 0 mod N so the only term which survives is A(u)
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DFT example
Start with the definition of the DFT

and suppose that
a = {1, 2, 3, 4}, n = 2, and N = 4

Ax =
1√
N

N−1∑
k=0

ake
2πikx/N

A0 =
1
2 (a0 + a1 + a2 + a3) = 1

2(1 + 2 + 3 + 4) = 5

A1 =
1
2

(
a0 + a1e

iπ/2 + a2e
iπ + a3e

i3π/2
)

= 1
2(1 + 2i − 3− 4i) = 1

2(−2− 2i) = −(1 + i)

A2 =
1
2

(
a0 + a1e

iπ + a2e
i2π + a3e

i3π
)
= (1− 2 + 3− 4) = −1

A3 =
1
2

(
a0 + a1e

i3π/2 + a2e
i3π + a3e

i9π/2
)
= 1

2(1− 2i − 3 + 4i) = −(1− i)

But if u = 2 and ak = e−2πiuk/N , we have

A0 =
1
2

(
1 + e−iπ + e−i2π + e−i3π

)
= 1

2(1− 1 + 1− 1) = 0

A1 =
1
2

(
1 + e−iπe iπ/2 + e−i2πe iπ + e−i3πe i3π/2

)
= 1

2(1− i − 1 + i) = 0

A2 =
1
2

(
1 + e−iπe iπ + e−i2πe i2π + e−i3πe i3π

)
= 1

2(1 + 1 + 1 + 1 + 1) = 2

A3 =
1
2

(
1 + e−iπe i3π/2 + e−i2πe i3π + e−i3πe i9π/2

)
= 1

2(1− i − 1 + i) = 0
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
and a permutation matrix defined by

R
(k)
xy =


1 for 2x = y

1 for 2x − 2k + 1 = y

0 otherwise

R(3) =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
and a permutation matrix defined by

R
(k)
xy =


1 for 2x = y

1 for 2x − 2k + 1 = y

0 otherwise

i = 0; y = 2x = 0

R(3) =


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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
and a permutation matrix defined by

R
(k)
xy =


1 for 2x = y

1 for 2x − 2k + 1 = y

0 otherwise

x = 1; y = 2x = 2

R(3) =



1

0 0 0 0 0 0 0
0 0

1
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0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
and a permutation matrix defined by

R
(k)
xy =


1 for 2x = y

1 for 2x − 2k + 1 = y

0 otherwise

x = 2; y = 2x = 4

R(3) =



1

0 0 0 0 0 0 0
0 0

1

0 0 0 0 0
0 0 0 0

1

0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
and a permutation matrix defined by

R
(k)
xy =


1 for 2x = y

1 for 2x − 2k + 1 = y

0 otherwise

x = 3; y = 2x = 6

R(3) =



1

0 0 0 0 0 0 0
0 0

1

0 0 0 0 0
0 0 0 0

1

0 0 0
0 0 0 0 0 0

1

0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
and a permutation matrix defined by

R
(k)
xy =


1 for 2x = y

1 for 2x − 2k + 1 = y

0 otherwise

x = 4; y = 2x − 8 + 1 = 1

R(3) =



1

0 0 0 0 0 0 0
0 0

1

0 0 0 0 0
0 0 0 0

1

0 0 0
0 0 0 0 0 0

1

0
0

1

0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
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Fast Fourier transform

The fast Fourier transform (FFT) is an efficient implementation for N = 2n, called F (n)

The implementation involves recursive decomposition of F (n) in terms of Fourier transforms of
lower powers of 2

If ω(n) = e2πi/N is the Nth root of unity, the elements of
the Fourier transform matrix are

where x , y ∈ {0, . . . ,N − 1}

F
(n)
xy = ωxy

(n)

Let F (k), I (k), R(k) be the 2k -dimensional
Fourier transform matrix, identity matrix,
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Fast Fourier transform

The R(k) matrix performs a shuffle trans-
form on a column vector

Using F (k), I (k), R(k) plus D(k), a diagonal

matrix with entries ω0
(k+1), . . . , ω

2k−1
(k+1) it is

possible to solve for F (k) recursively

R
(3)

F (k) =
1√
2

(
I (k−1) D(k−1)

I (k−1) −D(k−1)

)(
F (k−1) 0

0 F (k−1)

)
R(k)

The R(k) operator serves to reorder the data vector into odd and even elements and
multiplication by block diagonal matrices is very efficient

Computing F (k) becomes computing 2 F (k−1), then 4 F (k−2), and so on until 2k−1 F (1)

matrices and O(nN) computation
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Quantum Fourier transform

The quantum Fourier transform (QFT) like the FFT assumes N = 2n and that the amplitudes
ax ≡ a(x) of the superposition state |ψ⟩ are the function to be transformed

|ψ⟩ =
N−1∑
x=0

a(x)|x⟩ −→
N−1∑
x=0

A(x)|x⟩

The QFT does not require an output register as the output quantum state contains the
Fourier transform in its complex amplitudes

If the initial state is such that the amplitudes are a periodic function with period r = 2m, the
resultant Ax would be zero unless x = j Nr with j = 0, 1, . . . , Nr − 1

When r ̸= 2m, the QFT will produce an approximate solution with higher probability
coefficients for states with integers near multiples of N

r

As the base for the QFT, N = 2n is increased, the approximation improves

The QFT is exponentially faster, [O(n2)], than the discrete [O(N2)], and the fast [O(N logN)]
transforms
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Quantum Fourier transform

For N = 2n, the quantum Fourier transform
acting on |k⟩ is defined as

U
(n)
F |k⟩ = 1√

N

N−1∑
x=0

e2πikx/N |x⟩

For N = 1 the quantum Fourier transform is identical to the Hadamard transform

U
(1)
F |0⟩ = 1√

2

1∑
x=0

e0|x⟩ = 1√
2
(|0⟩+ |1⟩), U

(1)
F |1⟩ = 1√

2

1∑
x=0

eπix |x⟩ = 1√
2
(|0⟩ − |1⟩)

The recursive decomposition of the fast Fourier transform is used to compute the N = 2n

transform

U
(k+1)
F =

1√
2

(
I (k) D(k)

I (k) −D(k)

) U
(k)
F 0

0 U
(k)
F

R(k+1)

All matrices are unitary and can be implemented efficiently on a quantum computer
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QFT implementation

U
(k+1)
F =

1√
2

(
I (k) D(k)

I (k) −D(k)

)(
U

(k)
F 0

0 U
(k)
F

)
R(k+1)

The implementation starts with the rotation R(k+1)

R(k+1) =
2k−1∑
i=0

|i⟩⟨2i |+ |i + 2k⟩⟨2i + 1|

This can be accomplished by a permutation of the k+1 qubits,
resulting in just the kind of shuffling needed

Only k − 1 swap operations are needed to perform this permu-
tation

000 → 000
001 → 010
010 → 100
011 → 110
100 → 001
101 → 011
110 → 101
111 → 111

Next is the QFT transformation matrix Uk+1
F ,

which is implemented by recursively applying the
QFT to qubits 0 to k

(
U

(k)
F 0

0 U
(k)
F

)
= I ⊗ U

(k)
F
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The diagonal matrix of phase shifts, D(k) is de-
composed recursively, where ω(k+1) = e2πi/2

k+1 D(k) = D(k−1) ⊗
(

1 0
0 ω(k+1)

)
This recursive decomposition applies a phase rotation of ωj+1 to the j th qubit for 1 ≤ j ≤ k
and can be implemented using k single-qubit gates

Thus only k gates are necessary for the implementation of the controlled D(k)
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H ⊗ I (k)
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)
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QFT implementation

One possible recursive circuit for QFT is

0
1
2

U
F

(k) (k)
D

k 1

k 2
k 3

0
1

k 2
k 1

H

The recursive circuit for U
(k+1)
F can be im-

plemented as

define QFT |x [1]⟩ = H|x⟩
QFT |x [n]⟩ =

1. Swap|x0⟩|x1 · · · xn−1⟩
2. QFT |x0 · · · xn−2⟩
3. |xn−1⟩ control D(n−1)|x0 · · · xn−2⟩
4. H|xn−1⟩

D(k) and R(k) can be implemented with O(k) gates and the kth step in the recursion adds

O(K ) gates to the implementation of U
(n)
F , overall U

(n)
F takes O(n2) gates to implement which

exponentially faster than the O(n2n) for a classical FFT
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QFT example

A more straightforward circuit provides insight to the recursive one just described

H

H

R2 R
n-1

Rn

R
n-2

R
n-1

H R2

H

Rn =

(
1 0

0 e2πi/2
n

)

Starting with the high order qubit at the top, the Hadamard transform is followed by
controlled rotations from each of the other N − 1 qubits

The next qubit is transformed the same way using the N − 2 lower order qubits, and so on
until the last qubit which only has a Hadamard gate applied

At the end, all the qubits need to be swapped to recover the proper order
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