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the Bernstein-Vazirani problem, in particular
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Consider a C,o+ acting on the Hadamard basis
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Mermin's interpretation

David Mermin proposed a simpler interpretation

for how quantum algorithms and the solution to 1H H
the Bernstein-Vazirani problem, in particular 7 7
Consider a C,o+ acting on the Hadamard basis
Cot| ++) = Cror3(/00) + [01) + [10) + [11)) = 3(|00) + [01) + [11) + |10
Crot| +—) = notz(!00> 01) + [10) — [11)) = 5(|00) — [01) +[11) — |10
Crot| = +) = Caor3(|00) +[01) — [10) —[11)) = 3(|00) + |01) —[11) — [10
Coot| = =) = Caor3(|00) — [01) — [10) + [11)) = 5(|00) — |01) — [11) + [10
If we then apply the Hadamard transform to each
bit the resulting truth table becomes
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for how quantum algorithms and the solution to 1H H
the Bernstein-Vazirani problem, in particular 7 7

Consider a C,o+ acting on the Hadamard basis
Cot| + +) = Caor3(|00) + |01) +[10) + [11)) = 3(]00) + [01) + [11) + |10
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Initial Final

If we then apply the Hadamard transform to each
bit the resulting truth table becomes
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Mermin's interpretation

David Mermin proposed a simpler interpretation
for how quantum algorithms and the solution to 1H

H

the Bernstein-Vazirani problem, in particular 7

Consider a C,o+ acting on the Hadamard basis

H
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the Bernstein-Vazirani problem, in particular 7 7
Consider a C,o+ acting on the Hadamard basis
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David Mermin proposed a simpler interpretation
for how quantum algorithms and the solution to 1H Hr
the Bernstein-Vazirani problem, in particular

4 H H -
Consider a C,o+ acting on the Hadamard basis
Cot| + +) = Caor3(|00) + |01) +[10) + [11)) = 2(]00) + [01) + [11) + [10)) = |+ +)
Crot| +—) = not2(100> 01) +[10) — [11)) = 3(]00) — [01) + [11) — [10)) = | — —)
Crot| = +) = Caor3(/00) +101) — [10) — [11)) = 3(]00) +[01) — [11) — [10)) = | — +)
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Mermin's interpretation

David Mermin proposed a simpler interpretation
for how quantum algorithms and the solution to 1H Hr
the Bernstein-Vazirani problem, in particular 7 ‘ 7 =
Consider a C,o+ acting on the Hadamard basis
Crot| ++) = Caor3(/00) +101) +[10) + [11)) = 3(]00) +[01) + [11) + [10)) = | + +)
Crot| + =) = notz(!00> 01) +[10) — [11)) = 3(]00) — [01) + [11) — [10)) = | — —)
Crot| = +) = Caor3(|00) +[01) — |10) — [11)) = 3(]00) + [01) — [11) — [10)) = | — +)
Crot| — =) = Caor3(|00) — [01) — |10) +[11)) = 3(|00) — [01) — [11) + [10)) = | + —)
If we then apply the Hadamard transform to each Initial Final
bit the resulting truth table becomes 00 — 00
01 — 1 1
This is simply a Cpor gate applied to the first qubit 1 0 — 1 0
controlled by the second 1 1 — 0 1
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Mermin's interpretation vV
This insight leads to a simple way to look at the black box for U,
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Mermin's interpretation A
This insight leads to a simple way to look at the black box for U,

1. Prepare an n-qubit register |0), g :

2. Prepare an ancilla qubit |a) = |1) I0>E 2l

3. Apply the Hadamard gate to all qubits E -
[1)E “ !:I||1>
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This insight leads to a simple way to look at the black box for U,

1. Prepare an n-qubit register |0), g :

2. Prepare an ancilla qubit |a) = |1) I0>E 2l
3. Apply the Hadamard gate to all qubits E -

4. Place a Cpot|u;)|a) for each u; =1 [1)E i} I
5.

Apply the Hadamard gate to all qubits

The net effect is to have the ancilla bit “turn
on" each qubit in the unknown, C,o¢|a)|u;)
where u; =1
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3. Apply the Hadamard gate to all qubits E a—
4. Place a Cpot|u;)|a) for each u; =1 [1)E i} 1)
5. Apply the Hadamard gate to all qubits
The net effect is to have the ancilla bit “turn [0} Loy
on" each qubit in the unknown, C,o¢|a)|u;) X
where u; =1 11y b <£—I1>

From this perspective there is no quantum parallelism but simply a discrete circuit which
produces the desired outcome
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This insight leads to a simple way to look at the black box for U,

1. Prepare an n-qubit register |0), E :
2. Prepare an ancilla qubit |a) = |1) |0>E Al
3. Apply the Hadamard gate to all qubits E -
4. Place a Cpot|u;)|a) for each u; =1 [1)E i} I
5. Apply the Hadamard gate to all qubits
The net effect is to have the ancilla bit “turn [0} Loy
on" each qubit in the unknown, C,o¢|a)|u;) X
where u; =1 11y b <£—I1>

From this perspective there is no quantum parallelism but simply a discrete circuit which
produces the desired outcome

Of course, this presupposes that one knows what |u) is so we are peering into the black box
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Simon'’s problem — description vV

Suppose we have a 2-to-1 function f(x) such that f(x) = f(x & a)
where a is secret and both x and a are n bit strings
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Classically, this can be done by querying the function until we obtain
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Classically, this can be done by querying the function until we obtain
two identical values for f(x) and then calculate a = xo @ x1
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In contrast, Simon’s quantum algorithm is a calculation which is O(n)
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Suppose we have a 2-to-1 function f(x) such that f(x) = f(x & a)
where a is secret and both x and a are n bit strings

For example, when n = 3 we might have the table

There are 4 values for f(x), each appearing twice, once in the top
half of the table and once in the bottom

The goal of the algorithm is to find the the secret string a

Classically, this can be done by querying the function until we obtain
two identical values for f(x) and then calculate a = xo @ x1

This can take up to 2"~! + 1 queries so the computation is O(2")

In contrast, Simon’s quantum algorithm is a calculation which is O(n)

X

f(x)

000
001
010
011
100
101
110
111

111
000
110
010
000
111
010
110

In this case, we can see that a = 010 ¢ 111 = 101 and this holds for all matched pairs in the

table
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Simon's algorithm — quantum circuit \

The problem requires two registers of n bits each which we designate with |0), and |0), as
input and output registers, respectively
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Simon's algorithm — quantum circuit i

The problem requires two registers of n bits each which we designate with |0), and |0), as
input and output registers, respectively

|#0) = 10)n[0)n (o) |P1)  [¢2)  d3)  [¢a)
10)n % [ ||
Y ey
|0) = él;‘ i i
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Simon's algorithm — quantum circuit

Dropping the |f(xp)) as it has already been measured, we have
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Dropping the |f(xp)) as it has already been measured, we have
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Simon's algorithm — quantum circuit
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Simon's algorithm — quantum circuit

Dropping the |f(xp)) as it has already been measured, we have
271
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This is a superposition of 27 p055|b|e states, one of which will be observed when [¢4) is
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Simon's algorithm — quantum circuit

Dropping the |f(xp)) as it has already been measured, we have
271

|a) =

W Z Xo y [1 + (—1)a-y] ly) "15'0> ‘¢|1> ‘¢|2> ’<Z>I3) ‘(;SI4>
0, =wk E=——wE
There are two cases to consider for the mod-
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ulo 2 scalar product a -y | | Ur| | F(x0)
| |

y-a£0 — |pa)=0 0 =— =

The second case is for a- y = 0, in which case
1 21

Y [1+1]ly) =

|¢4) = \/WZ WZ 17ly)

This is a superposition of 27 p055|b|e states, one of which will be observed when [¢4) is
measured

If n— 1 linearly independent |y) are measured, it is possible to solve y - a =0
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Simon's algorithm — example A

Suppose a system with n =4 and a = 1001, f(x) has the truth table
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Simon's algorithm — example N f(x)‘”}'
0000 1111
0001 0001
0010 1110
0011 1101
0100 0000
0101 0101
0110 1010
0111 1001
1000 0001
1001 1111
1010 1101
1011 1110
1100 0101
1101 0000
1110 1001
1111 1010
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¢} = [0) \0> = |0000)/0000)

[61) = Z|x 10000)

62) = le\f

63) = ﬁ [Ix0) + [0 @ a)] 1 (x0))

Carlo Segre (lllinois Tech)

(o) |o1)  [¢2)  |o3)

0. HwHe =

T
I I I
| U |1
I I I
I I

‘0>4 | | |

For example, suppose f(xg) = 1010

PHYS 407 - Introduction to Quantum Computing

|pa)

X
0000
0001
0010
! 0011
| 0100
| 0101
. 0110
: 0111
! 1000
1001
1010
1011
1100
1101
1110
1111

February 17, 2022

f(x;iw
1111
0001
1110
1101
0000
0101
1010
1001
0001
1111
1101
1110
0101
0000
1001
1010

11/13



Simon's algorithm — example N f(Xj\si}}
0000 1111
0001 0001

0010 1110
|po) |¢>|1> |¢|2> |¢|3> M),‘O 0011 1101

|
on) = ZIX 0000) 008 SH W = 0100 0000
: : U : : 0101 0101
o) Z| \IF(x | | fl | 0110 1010
2 X | | | |
10), S=—== E'd | 0111 1001
! ! [ [ 1000 0001

|b3) = 7 [Ix0) + x0 @ a)] 1f(x0))  For example, suppose f(xo) = 1010 1001 1111

1010 1101

) = LOLLO) D] oy 1011 1110
V2 1100 0101
1101 0000

1110 1001

1111 1010

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 11/13

Suppose a system with n =4 and a = 1001, f(x) has the truth table
[¢0) = [0) \0> = 0000)|0000)




Simon's algorithm — example N f(Xj\si}}
0000 1111
0001 0001

0010 1110
|po) |f1> |f2> |¢f> ‘ﬁ4> 0011 1101

|
on) = ZIX 0000) 008 SH W = 0100 0000
: : U : : 0101 0101
o) Z| \IF(x | | fl | 0110 1010
2 X | | | |
10), S=—== E'd | 0111 1001
! ! [ [ 1000 0001

|b3) = 7 [Ix0) + x0 @ a)] 1f(x0))  For example, suppose f(xo) = 1010 1001 1111

1010 1101
11 1111
|¢3) = [0110) + >Lu1ngy 1011 1110

V2 1100 0101
1101 0000
1110 1001
1111 1010

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 11/13

Suppose a system with n =4 and a = 1001, f(x) has the truth table
[¢0) = [0) \0> = 0000)|0000)




Simon'’s algorithm — example N f(X)\ﬁ;}
0000 1111
0001 0001

0010 1110
|po) |¢>|1> |¢|2> |¢|3> M),‘O 0011 1101

|
on) = ZIX 0000) 008 SH W = 0100 0000
: : U : : 0101 0101
o) Z| \IF(x | | fl | 0110 1010
2 X | | | |
10), S=—== E'd | 0111 1001
! ! [ [ 1000 0001

|b3) = 7 [Ix0) + x0 @ a)] 1f(x0))  For example, suppose f(xo) = 1010 1001 1111

1010 1101
[10110) + [1111)] now apply the Walsh transformation 1011 1110
|#3) = y

V2 1100 0101
1101 0000
1110 1001
1111 1010

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 11/13

Suppose a system with n =4 and a = 1001, f(x) has the truth table
[¢0) = [0) \0> = 0000)|0000)




Simon's algorithm — example

Suppose a system with n =4 and a = 1001, f(x) has the truth table

40} = 0310} = ja0a0y{0oce) ) l61) l62)  Ids)  Ida)

1) = le 0000) |0>4E:|ﬂ'$
| AR
| | |
| |

x)|f(x |
62) = Z| I o, s

|#3) = 7 [Ix0) + [x0 ® a)] [f(x0))  For example, suppose f(xp) = 1010
[l0110) + [1111)
|¢3) = 7
[10000) — [0010) — [0100) +[0110) +]1001) — |1011) — [1101) +|1111)]
V38

]Jf/@qr))’ now apply the Walsh transformation

|pa) =

X
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022

f(x;iw
1111
0001
1110
1101
0000
0101
1010
1001
0001
1111
1101
1110
0101
0000
1001
1010

11/13



Simon'’s algorithm — example N f(Xﬁi/}.

: 0000 1111

t th n =4 and a = 1001, f(x) has the truth tabl
’S;;;poseoa;;/s eBOVSL)HOZOO> and a = 1001, f(x) has the truth table 0001 0001

0 = p—
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Simon’s algorithm — example V

|¢a) = J5 [10000) — [0010) — [0100) + [0110) + [1001) — [1011) — [1101) 4 [1111)]
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Simon's algorithm — example V
|¢a) = 75 [10000) — |0010) — |0100) + [0110) +[1001) — [1011) — |1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0
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Simon'’s algorithm — example Y

[¢4) = J [0000) — |0010) — [0100) +[0110) + [1001) — [1011) — [1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-
ample, we can check this identity
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should satisfy the linear equation a-y =0
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ample, we can check this identity |1001)-/0000) =1-0+0-0+0-0+1-0=0

11001)-]1001) = 1-1+0-04+0-0 + 1.1 =2

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 12/13



Simon'’s algorithm — example Y
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Simon's algorithm — example V
|¢a) = 75 [10000) — |0010) — |0100) + [0110) +[1001) — [1011) — |1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-
ample, we can check this identity |1001)-]0000) =1-0+0-0+0-0+1:0=0

and the other 6 have the same properties |1001)-[1001) =1-1+0-0+0-0+1-1=2=0

It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a
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It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a

Trial ly) Indep.?
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Simon's algorithm — example v
|pa) = % [/0000) — |0010) — |0100) + |0110) + [1001) — |1011) — |1101) + |1111)]

The result of the final measurement, |y) will be one of these eight values and each of them

should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-
ample, we can check this identity |1001)-]0000) =1-0+0-0+0-0+1:0=0

and the other 6 have the same properties |1001)-[1001) =1-1+0-0+0-0+1-1=2=0

It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a

Trial ly) Indep.?
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Simon's algorithm — example V
|¢a) = 75 [10000) — |0010) — |0100) + [0110) +[1001) — [1011) — |1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0
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Simon's algorithm — example V
|¢a) = 75 [10000) — |0010) — |0100) + [0110) +[1001) — [1011) — |1101) + [1111)]
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Simon's algorithm — example v
|pa) = % [/0000) — |0010) — |0100) + |0110) + [1001) — |1011) — |1101) + |1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
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1 ]0100)  VYes
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Simon's algorithm — example
[¢4) = J [0000) — |0010) — [0100) +[0110) + [1001) — [1011) — [1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-

ample, we can check this identity 1001)/0000) = 1-0+0-0+0-0+1-0=0

and the other 6 have the same properties |1001)-[1001) =1-1+0-0+0-0+1-1=2=0

It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a

Trial ly) Indep.? Create a matrix from the y - a = 0 equation and the three
1 10000) No independent values obtained
1 ]0010)  Yes
1 ]0100)  VYes
1 |0110) No
1 |1001)  Yes
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Simon's algorithm — example
[¢4) = J [0000) — |0010) — [0100) +[0110) + [1001) — [1011) — [1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-

ample, we can check this identity 1001)/0000) = 1-0+0-0+0-0+1-0=0

and the other 6 have the same properties |1001)-[1001) =1-1+0-0+0-0+1-1=2=0

It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a

Trial ly) Indep.? Create a matrix from the y - a = 0 equation and the three
1 10000) No independent values obtained
1 |0010)  Yes 0 010 a3 0
1 |0100)  Yes 0100 a | |0
1 |0110) No -
1 |1001)  Yes
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Simon's algorithm — example
[¢4) = J [0000) — |0010) — [0100) +[0110) + [1001) — [1011) — [1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-

ample, we can check this identity 1001)/0000) = 1-0+0-0+0-0+1-0=0

and the other 6 have the same properties |1001)-[1001) =1-1+0-0+0-0+1-1=2=0

It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a

Trial ly) Indep.? Create a matrix from the y - a = 0 equation and the three
1 10000) No independent values obtained
1 |0010)  Yes 0 010 a3 0
1 |0100)  Yes 0100 a| |0
1 |0110) No 1 001 a | |0
1 |1001)  Yes
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Simon's algorithm — example
[¢4) = J [0000) — |0010) — [0100) +[0110) + [1001) — [1011) — [1101) + [1111)]

The result of the final measurement, |y) will be one of these eight values and each of them
should satisfy the linear equation a-y =0

Since we know that a = |1001) for this ex-

ample, we can check this identity 1001)/0000) = 1-0+0-0+0-0+1-0=0

and the other 6 have the same properties |1001)-[1001) =1-1+0-0+0-0+1-1=2=0

It is now necessary to collect n — 1 = 3 independent values of |y) to solve for a

Trial ly) Indep.? Create a matrix from the y - a = 0 equation and the three
1 10000) No independent values obtained
1 |0010)  Yes 0 010 a3 0
1 |0100)  Yes 0100 a | |0
1 |0110) No 100 1 a | |0
1 |1001)  Yes 0 00O ao 0
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Simon's algorithm — example A

Solve this matrix equation by Gaussian elim-

ination
0 010 as 0
01 0O a | |0
1 0 01 ai| | O
0 00O ap 0

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 13/13



Simon'’s algorithm — example Y

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3

0 01O as 0

0100 a | |0

1001 aa| |0

0 00O ao 0

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 13/13



Simon's algorithm — example

Solve this matrix equation by Gaussian elim-
ination

001077 as 0
01 00| |al| |O
100 1| |a]| |0
000 0]/|a 0

Convert the matrix to an upper triangular
form by swapping rows 1 and 3

100 17 as 0
0100 ||al| |O
0010]||al| |0
000 0]/ a 0
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Simon's algorithm — example \ i

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
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Simon's algorithm — example \ i

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
ap=0 =1
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Simon's algorithm — example \ i

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
ap=0 =1
dap = 0, ap = 07
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Simon's algorithm — example \ i

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
ap = 0 ap —

ay =0, a=0, aa=0, a=0,
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Simon's algorithm — example

Solve this matrix equation by Gaussian elim-
ination

001077 as 0
01 00| |al| |O
100 1| |a]| |0
000 0]/|a 0

\d

Convert the matrix to an upper triangular
form by swapping rows 1 and 3

1 as
0 ar
0 a1
0

0
0
1
0 ao

|
o ooo

10
01
0 0
00

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
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Simon's algorithm — example

Solve this matrix equation by Gaussian elim-
ination

001077 as 0
01 00| |al| |O
100 1| |a]| |0
000 0]/|a 0

\d

Convert the matrix to an upper triangular
form by swapping rows 1 and 3

1 as
0 ar
0 a1
0

0
0
1
0 ao

|
o ooo

10
01
0 0
00

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
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Simon'’s algorithm — example YV

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1
ap = 0 ag =
ay=0, a=0, az+a =0 ap=0, a=0, a3+a =0
a3=0 — a=10000)
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Simon's algorithm — example

Solve this matrix equation by Gaussian elim-
ination

001077 as 0
01 00| |al| |O
100 1| |a]| |0
000 0]/|a 0

\d

Convert the matrix to an upper triangular
form by swapping rows 1 and 3

1 as
0 ar
0 a1
0

0
0
1
0 ao

|
o ooo

10
01
0 0
00

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1

trivial, incorrect solution
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Simon's algorithm — example

Solve this matrix equation by Gaussian elim-
ination

001077 as 0
01 00| |al| |O
100 1| |a]| |0
000 0]/|a 0

\d

Convert the matrix to an upper triangular
form by swapping rows 1 and 3

100 17 as 0
0100 ||al| |O
0010]||al| |0
000 0]/ a 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1

trivial, incorrect solution

Carlo Segre (lllinois Tech)
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Simon'’s algorithm — example YV

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1

ao:O 20:1
aa=0, a=0, a+a=0 aa=0, a=0, a+a=0
3=0 —» a=]|0000) 33=-1=1 — a=]|1001)

trivial, incorrect solution
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Simon's algorithm — example \ i

Solve this matrix equation by Gaussian elim- Convert the matrix to an upper triangular
ination form by swapping rows 1 and 3
0010 as 0 1 001 as 0
0100 a | |0 0100 a | |0
1 001 aa| |0 0010 aa | | O
0 00O ao 0 0 00O ao 0

Since the bottom row of the matrix is all zeros, ag can be either 0 or 1

apg = ap = 1
aa=0, a=0 ata= aa=0, a=0 ata=0
a3=0 — a=10000) aa=-1=1 — a=11001)
trivial, incorrect solution correct solution
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