
Today’s outline - February 17, 2022

• Deutch-Josza problem

• Bernstein-Vazirani problem

• Mermin’s interpretation of parallelism

• Simon’s problem

Reading Assignment: Chapter 7.7-7.8

Homework Assignment #05:
Chapter 7:1,3,4
due Thursday, February 24, 2022
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The Deutsch-Jozsa problem

This is a multi-qubit generalization of the Deutsch problem where a function is balanced if an
equal number of input values return 0 and 1

Given a function f : Z2n 7→ Z2 that is known to be either constant or balanced, and a quantum
oracle Uf : |x⟩|y⟩ → |x⟩|y ⊕ f (x)⟩, determine whether the function f is constant or balanced

Start by using the ϕ = π phase change subroutine
to negate terms of the superposition of basis vec-
tors |x⟩ with f (x) = 1 which returns

Next apply the Walsh transform to |ψ⟩ recalling
that for a vector |r⟩, the Walsh transform is

|ψ⟩ = 1√
N

N−1∑
i=0

(−1)f (i)|i⟩

W |r⟩ = 1√
N

N−1∑
s=0

(−1)r ·s |s⟩

|ϕ⟩ = W |ψ⟩ = 1

N

N−1∑
i=0

(−1)f (i)
N−1∑
j=0

(−1)i ·j |j⟩


For each vector |i⟩ in the sum that makes up |ψ⟩, the Walsh transform applies a sign change
depending on the number of common 1 bits between |i⟩ and |j⟩
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The Deutsch-Jozsa problem

|ϕ⟩ = 1

N

N−1∑
i=0

(−1)f (i)
N−1∑
j=0

(−1)i ·j |j⟩



For constant f (x), |ϕ⟩ = |0⟩

For balanced f (x), |ϕ⟩ = |j⟩ ≠ |0⟩

For constant f , (−1)f (i) = (−1)f (0) is a
global phase and can be pulled out of the
sum

But N−1∑
x=0

(−1)x ·y =

{
N y = 0

0 y ̸= 0

For balanced f , f (i) = 0 when i ∈ X0

and the two internal sums must cancel when
|j⟩ = |0⟩ but not otherwise

|ϕ⟩ = (−1)f (0)
1

N

N−1∑
j=0

(
N−1∑
i=0

(−1)i ·j

)
|j⟩

= (−1)f (0)
1

N

N−1∑
i=0

(−1)i ·0|0⟩ = (−1)f (0)|0⟩

|ϕ⟩ = 1

N

N−1∑
j=0

∑
i∈X0

(−1)i ·j −
∑
i /∈X0

(−1)i ·j

 |j⟩

This solves the Deutsch-Jozsa problem with a single call to Uf which is exponentially better
than the classical solution
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For constant f , (−1)f (i) = (−1)f (0) is a
global phase and can be pulled out of the
sum

But N−1∑
x=0

(−1)x ·y =

{
N y = 0

0 y ̸= 0

For balanced f , f (i) = 0 when i ∈ X0

and the two internal sums must cancel when
|j⟩ = |0⟩ but not otherwise

|ϕ⟩ = (−1)f (0)
1

N

N−1∑
j=0

(
N−1∑
i=0

(−1)i ·j

)
|j⟩

= (−1)f (0)
1

N

N−1∑
i=0

(−1)i ·0|0⟩ = (−1)f (0)|0⟩

|ϕ⟩ = 1

N

N−1∑
j=0

∑
i∈X0

(−1)i ·j −
∑
i /∈X0

(−1)i ·j

 |j⟩

This solves the Deutsch-Jozsa problem with a single call to Uf which is exponentially better
than the classical solution

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 17, 2022 3 / 13



The Deutsch-Jozsa problem

|ϕ⟩ = 1

N

N−1∑
i=0

(−1)f (i)
N−1∑
j=0

(−1)i ·j |j⟩



For constant f (x), |ϕ⟩ = |0⟩

For balanced f (x), |ϕ⟩ = |j⟩ ≠ |0⟩
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The Bernstein-Vazirani problem

The Bernstein-Vazirani problem is to determine the value of an unknown string u of bit length
n using only queries of the form q · u

The quantum algorithm can solve this using a single query to a transformation Ufu where
fu(q) = q · u mod 2 and

Ufu : |q⟩|b⟩ 7→ |q⟩|b ⊕ fu(q)⟩

This is solved by starting with the circuit that was
used to apply the ϕ = π phase change which gives

|ψX ⟩ =
1√
N

N−1∑
q=0

(−1)fu(q)|q⟩ = 1√
N

N−1∑
q=0

(−1)u·q|q⟩ 1

W

HH

0

1

Ufu

ψ
x

If the Walsh-Hadamard transformation is now applied to |ψX ⟩ we have

W |ψX ⟩ = W

 1√
N

N−1∑
q=0

(−1)u·q|q⟩

 =
1√
N

N−1∑
q=0

(−1)u·qW |q⟩ = 1

N

N−1∑
q=0

(−1)u·q

(
N−1∑
z=0

(−1)q·z |z⟩

)
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The Bernstein-Vazirani problem

W |ψX ⟩ =
1

N

N−1∑
q=0

(−1)u·q

(
N−1∑
z=0

(−1)q·z |z⟩

)

=
1

N

N−1∑
z=0

N−1∑
q=0

(−1)(u⊕z)·q|z⟩


=

1

N

N−1∑
q=0

(−1)q·0|u⟩ = 1

N
N|u⟩ = |u⟩

But from the discussion of the Hanning dis-
tance, we have that

(−1)u·q+q·z ≡ (−1)(u⊕z)·q

And the internal sum is zero unless u⊕z ≡ 0
so only the term where z ≡ u remains

1HH

0

1

Ufu

W W u
This illustrates a common interpretation of how quan-
tum circuits work, that is using parallelism to perform
a computation on all possible inputs then manipulate
the resulting superposition to get the result
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Mermin’s interpretation

David Mermin proposed a simpler interpretation
for how quantum algorithms and the solution to
the Bernstein-Vazirani problem, in particular

Consider a Cnot acting on the Hadamard basis

H

H

H

H

=

Cnot |++⟩ = Cnot
1
2(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1

2(|00⟩+ |01⟩+ |11⟩+ |10⟩) = |++⟩
Cnot |+−⟩ = Cnot

1
2(|00⟩ − |01⟩+ |10⟩ − |11⟩) = 1

2(|00⟩ − |01⟩+ |11⟩ − |10⟩) = | − −⟩
Cnot | −+⟩ = Cnot

1
2(|00⟩+ |01⟩ − |10⟩ − |11⟩) = 1

2(|00⟩+ |01⟩ − |11⟩ − |10⟩) = | −+⟩
Cnot | − −⟩ = Cnot

1
2(|00⟩ − |01⟩ − |10⟩+ |11⟩) = 1

2(|00⟩ − |01⟩ − |11⟩+ |10⟩) = |+−⟩

If we then apply the Hadamard transform to each
bit the resulting truth table becomes

This is simply a Cnot gate applied to the first qubit
controlled by the second

Initial Final
0 0 −→ 0 0
0 1 −→ 1 1
1 0 −→ 1 0
1 1 −→ 0 1
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If we then apply the Hadamard transform to each
bit the resulting truth table becomes

This is simply a Cnot gate applied to the first qubit
controlled by the second

Initial Final
0 0 −→ 0 0
0 1 −→ 1 1
1 0 −→ 1 0

1 1 −→ 0 1
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Mermin’s interpretation

This insight leads to a simple way to look at the black box for Ufu

1. Prepare an n-qubit register |0⟩n
2. Prepare an ancilla qubit |a⟩ = |1⟩
3. Apply the Hadamard gate to all qubits

4. Place a Cnot |ui ⟩|a⟩ for each ui = 1

5. Apply the Hadamard gate to all qubits

The net effect is to have the ancilla bit “turn
on” each qubit in the unknown, Cnot |a⟩|ui ⟩
where ui = 1

u
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1

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

u

1

0

1

From this perspective there is no quantum parallelism but simply a discrete circuit which
produces the desired outcome

Of course, this presupposes that one knows what |u⟩ is so we are peering into the black box
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Simon’s problem – description

Suppose we have a 2-to-1 function f (x) such that f (x) = f (x ⊕ a)
where a is secret and both x and a are n bit strings

For example, when n = 3 we might have the table

There are 4 values for f (x), each appearing twice, once in the top
half of the table and once in the bottom

The goal of the algorithm is to find the the secret string a

Classically, this can be done by querying the function until we obtain
two identical values for f (x) and then calculate a = x0 ⊕ x1

This can take up to 2n−1 + 1 queries so the computation is O(2n)

In contrast, Simon’s quantum algorithm is a calculation which is O(n)

x f (x)

000 111

001 000

010 110

011 010

100 000

101 111

110 010

111 110

In this case, we can see that a = 010⊕ 111 = 101 and this holds for all matched pairs in the
table
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Simon’s algorithm – quantum circuit

The problem requires two registers of n bits each which we designate with |0⟩n and |0⟩n as
input and output registers, respectively

|ϕ0⟩ = |0⟩n|0⟩n

|ϕ1⟩ = W ⊗ I (|0⟩n|0⟩n) =
1√
2n

2n−1∑
x=0

|x⟩|0⟩n

|ϕ2⟩ =
1√
2n

2n−1∑
x=0

|x⟩|f (x)⟩

|ϕ3⟩ =
1√
2
(|x0⟩+ |x0 ⊕ a⟩) |f (x0)⟩

f (x0)

|0⟩n W

Uf

W

|0⟩n

|ϕ0⟩ |ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩

|ϕ4⟩ = W ⊗ I

[
1√
2
(|x0⟩+ |x0 ⊕ a⟩) |f (x0)⟩

]
=

1√
2n

1√
2

2n−1∑
y=0

[
(−1)x0·y + (−1)(x0⊕a)·y

]
|y⟩|f (x0)⟩

=
1√
2n+1

2n−1∑
y=0

(−1)x0·y [1 + (−1)a·y ] |y⟩|f (x0)⟩
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Simon’s algorithm – quantum circuit

Dropping the |f (x0)⟩ as it has already been measured, we have

|ϕ4⟩ =
1√
2n+1

2n−1∑
y=0

(−1)x0·y [1 + (−1)a·y ] |y⟩

There are two cases to consider for the mod-
ulo 2 scalar product a · y

y · a ̸= 0 −→ |ϕ4⟩ ≡ 0

f (x0)

|0⟩n W

Uf

W

|0⟩n

|ϕ0⟩ |ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩

The second case is for a · y = 0, in which case

|ϕ4⟩ =
1√
2n+1

2n−1∑
y=0

(−1)x0·y [1 + 1] |y⟩ = 1√
2n−1

2n−1∑
y=0

(−1)x0·y |y⟩

This is a superposition of 2n possible states, one of which will be observed when |ϕ4⟩ is
measured

If n − 1 linearly independent |y⟩ are measured, it is possible to solve y · a = 0
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Simon’s algorithm – example

Suppose a system with n = 4 and a = 1001, f (x) has the truth table

|ϕ0⟩ = |0⟩|0⟩ = |0000⟩|0000⟩

|ϕ1⟩ =
1

4

15∑
x=0

|x⟩|0000⟩

|ϕ2⟩ =
1

4

15∑
x=0

|x⟩|f (x)⟩

|ϕ3⟩ =
1√
2
[|x0⟩+ |x0 ⊕ a⟩] |f (x0)⟩

f (x0)

|0⟩4 W

Uf

W

|0⟩4

|ϕ0⟩ |ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩

For example, suppose f (x0) = 1010

|ϕ3⟩ =
[|0110⟩+ |1111⟩]√

2
����|f (x0)⟩ now apply the Walsh transformation

|ϕ4⟩ =
[|0000⟩−|0010⟩−|0100⟩+|0110⟩+|1001⟩−|1011⟩−|1101⟩+|1111⟩]√

8
Note that any value of |f (x0)⟩ measured will result in these 8 |x0⟩

x f (x)

0000 1111
0001 0001
0010 1110
0011 1101
0100 0000
0101 0101
0110 1010
0111 1001
1000 0001
1001 1111
1010 1101
1011 1110
1100 0101
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Simon’s algorithm – example

|ϕ4⟩ = 1√
8
[|0000⟩ − |0010⟩ − |0100⟩+ |0110⟩+ |1001⟩ − |1011⟩ − |1101⟩+ |1111⟩]

The result of the final measurement, |y⟩ will be one of these eight values and each of them
should satisfy the linear equation a · y = 0

Since we know that a = |1001⟩ for this ex-
ample, we can check this identity

and the other 6 have the same properties

|1001⟩·|0000⟩ = 1·0 + 0·0 + 0·0 + 1·0 = 0

|1001⟩·|1001⟩ = 1·1 + 0·0 + 0·0 + 1·1 = 2 = 0

It is now necessary to collect n − 1 = 3 independent values of |y⟩ to solve for a

Trial |y⟩ Indep.?

1 |0000⟩ No
1 |0010⟩ Yes
1 |0100⟩ Yes
1 |0110⟩ No
1 |1001⟩ Yes

Create a matrix from the y · a = 0 equation and the three
independent values obtained

0 0 1 0
0 1 0 0
1 0 0 1
0 0 0 0




a3
a2
a1
a0

 =



0
0
0
0


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Simon’s algorithm – example

Solve this matrix equation by Gaussian elim-
ination

0 0 1 0
0 1 0 0
1 0 0 1
0 0 0 0




a3
a2
a1
a0

 =


0
0
0
0



Convert the matrix to an upper triangular
form by swapping rows 1 and 3

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0




a3
a2
a1
a0

 =


0
0
0
0


Since the bottom row of the matrix is all zeros, a0 can be either 0 or 1

a0 = 0

a1 = 0, a2 = 0, a3 + a0 = 0

a3 = 0 −→ a = |0000⟩

trivial, incorrect solution

a0 = 1

a1 = 0, a2 = 0, a3 + a0 = 0

a3 = −1 = 1 −→ a = |1001⟩

correct solution
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