
Today’s outline - February 15, 2022

• Deutch’s problem

• Quantum subroutines

• State-dependent phase shift

• State-dependent amplitude shift

Reading Assignment: Chapter 7.5-7.7

Homework Assignment #05:
Chapter 7:1,3,4
due Thursday, February 24, 2022
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Deutch’s algorithm

The first truly quantum algorithm was described by
Deutch in 1985 and demonstrated that quantum com-
putation could outperform classical computation

This black box problem determines whether a function,
f is constant or balanced

f (0) −→ 0; f (1) −→ 0

f (0) −→ 1; f (1) −→ 1

f (0) −→ 0; f (1) −→ 1

f (0) −→ 1; f (1) −→ 0

Classically, this would require two calls to the black box, one for each value of the input bit,
but with a quantum algorithm, only one call is necessary

Implementation requires a two-qubit unitary transforma-
tion Uf |x⟩|y⟩ → |x⟩|y ⊕ f (x)⟩

Uf : |x⟩|0⟩ −→ |x⟩|f (x)⟩

Applying Uf to two qubits in the Hadamard basis gives

Uf |+−⟩ = Uf

[
1
2

(
|0⟩+ |1⟩

)(
|0⟩ − |1⟩

)]
= 1

2

[
|0⟩
(
|0⊕ f (0)⟩ − |1⊕ f (0)⟩

)
+ |1⟩

(
|0⊕ f (1)⟩ − |1⊕ f (1)⟩

)]
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Uf |+⟩|−⟩ = 1

2

[
|0⟩
(
|0⊕ f (0)⟩ − |1⊕ f (0)⟩

)
+ |1⟩

(
|0⊕ f (1)⟩ − |1⊕ f (1)⟩

)]

=
1

2

1∑
x=0

|x⟩
(
|0⊕ f (x)⟩ − |1⊕ f (x)⟩

)
when f (x) = 0 then

but if f (x) = 1 then

1√
2

(
|0⊕ f (x)⟩ − |1⊕ f (x)⟩

)
−→ 1√

2

(
|0⟩ − |1⟩

)
= +|−⟩

1√
2

(
|0⊕ f (x)⟩ − |1⊕ f (x)⟩

)
−→ 1√

2

(
|1⟩ − |0⟩

)
= −|−⟩

Thus, in a more compact notation, we write

Uf |+⟩|−⟩ = 1√
2

1∑
x=0

(−1)f (x)|x⟩|−⟩

For f (x) constant, both terms pick up the same phase shift and the state is |+⟩|−⟩

For f (x) balanced, only one term picks up a phase shift, giving a result of |−⟩|−⟩
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Deutch’s algorithm

As a quantum circuit, Deutch’s algorithm is imple-
mented by

1. prepare two qubits: q0 = |0⟩ and q1 = |1⟩
2. apply the Hadamard transform to each qubit

3. apply the black box algorithm

4. apply the Hadamard transform to q0

5. measure q0 and interpret

H H

H
Uf

q
0

q
1

0

1:

:

(a) q0 = 0 −→ f (x) is constant

(b) q0 = 1 −→ f (x) is balanced

q0 : |0⟩ → |+⟩ = 1√
2

(
|0⟩+ |1⟩

)
q1 : |1⟩ → |−⟩ = 1√
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(
|0⟩ − |1⟩

)
Uf |+⟩|−⟩ = 1√

2

1∑
x=0

(−1)f (x)|x⟩|−⟩

f (x) Uf |q0⟩|q1⟩ q0

f (0) → 0; f (1) → 0 +|+⟩|−⟩ |+⟩ → |0⟩
f (0) → 1; f (1) → 1 −|+⟩|−⟩ |+⟩ → |0⟩
f (0) → 0; f (1) → 1 +|−⟩|−⟩ |−⟩ → |1⟩
f (0) → 1; f (1) → 0 −|−⟩|−⟩ |−⟩ → |1⟩
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Quantum subroutines

Subroutines are useful in quantum computing as they are for classical computations and often
they utilize temporary qubits

These temporary qubits must be uncomputed as leaving them in the system could easily lead
to entanglement which would destroy the computation

A subroutine that computes
∑

i αi |xi ⟩ must not compute
∑

i αi |xi ⟩|yi ⟩ and simply throw away
the qubits that store |yi ⟩ unless it is certain that there is no entanglement with |xi ⟩

There is no entanglement when we can write∑
i

αi |xi ⟩|yi ⟩ =
(∑

i

αi |xi ⟩
)
⊗ |yi ⟩

this is possible only when |yi ⟩ ≡ |yj⟩ for all values of i and j

For this reason, it is essential to uncompute |yi ⟩ inside the subroutine before the output qubits
are transmitted
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Entanglement problems

Suppose the internal temporary computation, |t⟩
in the Deutch example is made explicit in a trans-
formation Vf such that

Vf : |x , t, y⟩ → |x , t ⊕ x , y ⊕ f (x)⟩

Deutch’s algorithm now will not function properly

H H

H

Vf

q
0

q
1

0

1:

:

t 0:

q0 : |0⟩ → |+⟩ = 1√
2

(
|0⟩+ |1⟩

)
, |t⟩ : |0⟩, q1 : |1⟩ → |−⟩ = 1√

2

(
|0⟩ − |1⟩

)
Vf (|+⟩|0⟩|−⟩) = Vf

( 1√
2

1∑
x=0

|x⟩|0⟩|−⟩
)
=

1√
2

1∑
x=0

(−1)f (x)|x⟩|x⟩|−⟩

For f (x) constant or balanced the Vf transformation yields

f (x) constant −→ Vf (|+⟩|0⟩|−⟩) = (|00⟩+ |11⟩)|−⟩
f (x) balanced −→ Vf (|+⟩|0⟩|−⟩) = (|00⟩ − |11⟩)|−⟩
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Phase change for a subspace

Suppose we have a superposition state given by |ψ⟩ =
∑

ai |i⟩

We wish to change the phase of every term |i⟩ in the superposition if |i⟩ ∈ X where X is a
subset of the entire space {0, 1, . . . ,N − 1}

The goal is to find an efficient implementa-
tion of the transformation Sϕ

X where
Sϕ
X

N−1∑
x=0

ax |x⟩ =
∑
x∈X

axe
iϕ|x⟩+

∑
x /∈X

ax |x⟩

Clearly it is possible to find a brute force implementation using the methods of Chapter 5,
however we want an efficient implementation to determine if a state is in a specific subspace

We want a function f (x) : Z2n → Z2 that takes
the natural numbers (represented by Z) modulo 2n

into the natural numbers modulo 2 such that

f (x) =

{
1 x ∈ X

0 x /∈ X

The depends on being able to compute membership in X efficiently but if this is possible with
a quantum transformation Uf then through the use of a temporary qubit, it is possible to
compute Sϕ

X
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f (x) =

{
1 x ∈ X

0 x /∈ X

The depends on being able to compute membership in X efficiently but if this is possible with
a quantum transformation Uf then through the use of a temporary qubit, it is possible to
compute Sϕ

X
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Phase change for a subspace

The procedure is to use the temporary qubit to compute f (x), then use the result of f (x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phasef (ϕ)|x [k]⟩ =
1. qubita[1]

2. Uf |x , a⟩
3. K (ϕ2 )|a⟩
4. T (−ϕ

2 )|a⟩
5. U−1

f |x , a⟩

create a single qubit a and set it to |0⟩
compute f (x) −→ a

apply a phase shift

apply a phase rotation

uncompute f (x) to disentangle a

The TK sequence serves to apply a rotation only if a is equal to |1⟩

T (−ϕ
2 )K (ϕ2 ) =

(
e−iϕ/2 0

0 e+iϕ/2

)(
e+iϕ/2 0

0 e+iϕ/2

)
=

(
1 0
0 e+iϕ

)
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Phase change of π

For the special case of ϕ = π there is an even simpler implementation

Sπ
X can be implemented by starting with the temporary qubit b in a superposition state

b : |−⟩ = 1√
2
(|0⟩ − |1⟩)

Suppose the initial state is given by
|ψ⟩ =

∑
x∈X

ax |x⟩+
∑
x /∈X

ax |x⟩

Uf (|ψ⟩ ⊗ |−⟩) = Uf

(∑
x∈X

ax |x⟩ ⊗ |−⟩

)
+ Uf

(∑
x /∈X

ax |x⟩ ⊗ |−⟩

)

= −

(∑
x∈X

ax |x⟩ ⊗ |−⟩

)
+

(∑
x /∈X

ax |x⟩ ⊗ |−⟩

)
= (Sπ

X |ψ⟩)⊗ |−⟩

0
n W

HH

Uf

1 1

ψ
x The circuit starts with a uniform superposition of an n-

qubit register and an acilla qubit in the |1⟩ state to create
the superposition |ψX ⟩ =

∑
(−1)f (x)|x⟩
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b : |−⟩ = 1√
2
(|0⟩ − |1⟩)

Suppose the initial state is given by
|ψ⟩ =
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x /∈X
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)
= (Sπ
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1 1

ψ
x The circuit starts with a uniform superposition of an n-

qubit register and an acilla qubit in the |1⟩ state to create
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(−1)f (x)|x⟩
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State-dependent phase changes

Suppose we wish to apply a phase shift that depends on the state of a specific qubit,
|x⟩ → e iϕ(x)|x⟩ where there is an associated function f : Zn → Zs that is efficiently computable

The i th bit of f (x) is the i th term of the binary expansion for the phase, ϕ(x) ≈ 2πf (x)/2s

Given a transformation Uf that is efficient, it is possible to perform the state-dependent phase
shift in O(s) steps plus 2 invocations of Uf

Suppose that f (x) = x , we want a subrou-
tine that changes the phase of an s-qubit
standard basis state |x⟩ by ϕ(x) = 2πx/2s

using the transformation

P(ϕ) = T
(
−ϕ

2

)
K
(
ϕ
2

)
=

(
1 0
0 e iϕ

)

define Phase |a[s]⟩ =
1. for i ∈ [0 . . . s − 1]

2. P
(
2π
2i

)
|ai ⟩

loop over all s bits in register |a⟩

apply the specified rotation to the i th qubit
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State-dependent phase changes

Using the subroutine Phase : |a⟩ → e i2πs/2
s
it is now possible to write a program that

implements the n-qubit transformation Phasef : |x⟩ → e i2πf (x)/2
s

define Phasef |x [k]⟩ =
1. qubit a[s]

2. Uf |x⟩|a⟩
3. Phase |a⟩
4. U−1

f |x⟩|a⟩

create an s-qubit temporary register

compute f in a

perform phase shift by 2πa/2s

uncompute f

Step 2 entangles |a⟩ with |x⟩ and is set to the binary expansion of ϕ(x) for the desired phase
shifts to |x⟩

Step 3 changes the phase of |a⟩ and also of |x⟩ because they are entangled

Step 4 unentangles |a⟩ from |x⟩ leaving it in the desired state
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State-dependent amplitude shifts

We wish to rotate each term in a superposition by a single qubit rotation R(β(x)) where β(x)
is state-dependent such that |x⟩ ⊗ |b⟩ → |x⟩ ⊗ (R(β(x))|b⟩

If β(x) ≈ 2πf (x)/2s and f : Zn → Zs define a subroutine

define Rot |a[s]⟩|b[1]⟩ =
1. for i ∈ [0 . . . s − 1]

2. |ai ⟩ controlR
(
2π
2i

)
|b⟩

loop over all s bits in register |a⟩

apply a controlled rotation to the |b⟩ qubit
The full program is thus

define Rotf |x [k]⟩|b[1]⟩ =
1. qubit a[s]

2. Uf |x⟩|a⟩
3. Rot |a, b⟩
4. U−1

f |x⟩|a⟩

create an s-qubit temporary register

compute f in a

perform rotation by 2πa/2s

uncompute f
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