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(a) go =0 — f(x) is constant
(

b) go =1 — f(x) is balanced

mented by q:lo— H
1. prepare two qubits: gqo = |0) and g1 = |1)
2. apply the Hadamard transform to each qubit %:10— H
3. apply the black box algorithm
4. apply the Hadamard transform to qq
5. measure gg and interpret
G0 2 10) = [+) = 2 (10} + 1)) )
f(0)—0;, f(1

( ) =
(0) —1; f(1)—
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V2 F0) > 1; f(1
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Subroutines are useful in quantum computing as they are for classical computations and often
they utilize temporary qubits

These temporary qubits must be uncomputed as leaving them in the system could easily lead
to entanglement which would destroy the computation

A subroutine that computes ) a|x;) must not compute > aj|x;)|y;) and simply throw away
the qubits that store |y;) unless it is certain that there is no entanglement with |x;)

There is no entanglement when we can write
Zal|xl |y: = (ZOZ,|X, ) & |y:>

this is possible only when |y;) = |y;) for all values of i and

For this reason, it is essential to uncompute |y;) inside the subroutine before the output qubits
are transmitted
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in the Deutch example is made explicit in a trans- °
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Entanglement problems \id

f(x) constant — V¢(|-4)[0)|-)) = (00) + [11))[-)  g:lo—{ H H  H H "/~
f(x) balanced — V¢(|+)|0)|—)) = (|00) — [11))|—)

t:lo) Vf

g — H
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Entanglement problems

f(x) constant — V¢(|[+)[0)|-)) = (100) + 11))|=)  qiio— H H  — H 7/
f(x) balanced — Vi(|+)]0)|-)) = (|00) — |11))|—)
t:lo Vf
The final step of applying the Hadamard transfor-
mation to qo uses the H ® | ® | transformation g, 10— H —

which yields
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Entanglement problems e
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Entanglement problems i

f(x) constant — Vi(|+)[0)|-)) = ([00) + [11))| =) qiio— H H H H "/
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The go qubit can be measured to be |0) or |1) with equal probability in both cases since two of
the terms do not cancel
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Phase change for a subspace N

Suppose we have a superposition state given by [¢) = " a;|/)
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We wish to change the phase of every term [i) in the superposition if |i) € X where X is a
subset of the entire space {0,1,...,N — 1}
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Phase change for a subspace \d

Suppose we have a superposition state given by ) =Y aj|i)

We wish to change the phase of every term |i) in the superposition if |/) € X where X is a
subset of the entire space {0,1,...,N — 1}

N—1
The goal is to find an efficient implementa- s¢ § : _ Z ip Z
ax|Xx) = axe "|x)+ ax | X
tion of the transformation 5;’? where X o ) ox ) ax )

Clearly it is possible to find a brute force implementation using the methods of Chapter 5,
however we want an efficient implementation to determine if a state is in a specific subspace
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Phase change for a subspace \d

Suppose we have a superposition state given by [¢)) = > aj|i)

We wish to change the phase of every term |i) in the superposition if |/) € X where X is a

subset of the entire space {0,1,...,N — 1}
N—1

The goal is to find an efficient implementa- s¢ _ ip
ax|Xx) = axe "|x)+ ax | X
tion of the transformation 5;’? where X );) ) XZE); ) )%;( )

Clearly it is possible to find a brute force implementation using the methods of Chapter 5,
however we want an efficient implementation to determine if a state is in a specific subspace

We want a function f(x) : Zy» — Z; that takes 1 xeX
the natural numbers (represented by Z) modulo 2" (x) = 0 X
into the natural numbers modulo 2 such that x ¢

The depends on being able to compute membership in X efficiently but if this is possible with
a quantum transformation Ur then through the use of a temporary qubit, it is possible to
compute Sfé
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Phase change for a subspace V

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement
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Phase change for a subspace V

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement
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define Phaser(4)|x[k]) =
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Phase change for a subspace V

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =
1. qubita[1]

create a single qubit a and set it to |0)
2. Uf|X, a)
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Phase change for a subspace \d

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =
1. qubita[1]

create a single qubit a and set it to |0)
2. Uf|X, a)

compute f(x) — a
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Phase change for a subspace \d

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Urlx, a) compute f(x) — a
3. K3
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Phase change for a subspace \d

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Urlx, a) compute f(x) — a
3. K(%)]a> apply a phase shift
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Phase change for a subspace \ i
The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to

apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Urlx, a) compute f(x) — a

3. K(%)]a> apply a phase shift

4 T(=%)a)
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Phase change for a subspace \ i
The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to

apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Urlx, a) compute f(x) — a

3. K(%)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation
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Phase change for a subspace V'

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Urlx, a) compute f(x) — a

3. K(ﬁ)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation

5. U;l\x, a)
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Phase change for a subspace V'

The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Ur|x, a) compute f(x) — a

3. K(ﬁ)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation

5. Urt|x, a) uncompute f(x) to disentangle a
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Phase change for a subspace V
The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement
The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Ur|x, a) compute f(x) — a

3. K(%)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation

5. Urt|x, a) uncompute f(x) to disentangle a

The TK sequence serves to apply a rotation only if a is equal to |1)
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Phase change for a subspace V
The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement
The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Ur|x, a) compute f(x) — a

3. K(%)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation

5. Urt|x, a) uncompute f(x) to disentangle a

The TK sequence serves to apply a rotation only if a is equal to |1)

)
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Phase change for a subspace V
The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Ur|x, a) compute f(x) — a

3. K(%)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation

5. Urt|x, a) uncompute f(x) to disentangle a

The TK sequence serves to apply a rotation only if a is equal to |1)

e—i®/2 0 eti®/2 0
L (A | (L
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Phase change for a subspace V
The procedure is to use the temporary qubit to compute f(x), then use the result of f(x) to
apply the phase change and finally uncompute the temporary qubit to avoid entanglement

The pseudo-code (Box 6.2 in text) is as follows

define Phaser(4)|x[k]) =

1. qubita[1] create a single qubit a and set it to |0)
2. Ur|x, a) compute f(x) — a

3. K(%)]a> apply a phase shift

4. T(—%)|a) apply a phase rotation

5. Urt|x, a) uncompute f(x) to disentangle a

The TK sequence serves to apply a rotation only if a is equal to |1)

e /2 eti®/2 1 0
T(_%)K(%) = ( 0 etid/2 > ( 0 etid/2 > = < 0 eti® >
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Phase change of 7

For the special case of ¢ = 7 there is an even simpler implementation

S% can be implemented by starting with the temporary qubit b in a superposition state
b:|-) =750~ 1))

Suppose the initial state is given by V) = );(axpd + %( ax|x)
Ur([¥) @ [=)) = Ur (Z ax|x) ® |—>> + Ur (Z ax|x) @ |—>>
xeX x¢X
=- (Z ax|x) ® !—>> + (Z ax|x) ® \-)) = (Sklv)) @ |-)

xeX x¢X

w— WH 1w

Ur
Iy — H — H 1
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Phase change of 7

For the special case of ¢ = 7 there is an even simpler implementation

S% can be implemented by starting with the temporary qubit b in a superposition state
b:|-) =750~ 1))

Suppose the initial state is given by ) = ;ax‘x> + %{ ax|x)
Ur(l) @ |=)) = Ur (Z ax|x) © |—>> + Ur (Z ax|x) @ |—>>
xeX x¢X
=- (Z ax|x) @ !—>> + (Z ax|x) ® \—)) = (Sxl¥) @ |-)
xeX x¢X
lo,— W — % The circuit starts with a uniform superposition of an n-
Us qubit register and an acilla qubit in the |1) state to create
mw—HMH/ —=H—m™ the superposition |ihx) = 3 (—=1))|x)
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Suppose we wish to apply a phase shift that depends on the state of a specific qubit,
x) — e®()|x) where there is an associated function f : Z,, — Zs that is efficiently computable
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define Phase |a[s]) =
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State-dependent phase changes

Suppose we wish to apply a phase shift that depends on the state of a specific qubit,
x) — e®()|x) where there is an associated function f : Z,, — Zs that is efficiently computable

The it bit of f(x) is the it term of the binary expansion for the phase, ¢(x) ~ 27f(x)/2°

Given a transformation Ur that is efficient, it is possible to perform the state-dependent phase
shift in O(s) steps plus 2 invocations of Ur

Suppose that f(x) = x, we want a subrou-

tine that changes the phase of an s-qubit P(¢)=T (_Q> K (Q) _ < 10 )
standard basis state |x) by ¢(x) = 2mx/2° 2 2 0 e

using the transformation

define Phase |a[s]) =

1. for ic[0...s—1] loop over all s bits in register |a)
2. P (22*7) |ai) apply the specified rotation to the i*" qubit
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State-dependent phase changes v}"

Using the subroutine Phase : |a) — oi2ms/2°

implements the n-qubit transformation Phaser : |x) — e

it is now possible to write a program that
i2mwf(x)/25
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Using the subroutine Phase : |a) — oi2ms/2°

implements the n-qubit transformation Phaser : |x) — e

it is now possible to write a program that
i2mwf(x)/25

define Phaser |x[k]) =

1. qubit a[s] create an s-qubit temporary register
2. Ur|x)|a) compute f in a
3. Phase |a) perform phase shift by 2ra/2°
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Using the subroutine Phase : |a) — €27%/%" it is now possible to write a program that

implements the n-qubit transformation Phaser : |x) — e/27f(x)/2°
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State-dependent phase changes A\

i2ms/2° it is now possible to write a program that

i2mwf(x)/25

Using the subroutine Phase : |a) — e
implements the n-qubit transformation Phaser : |x) — e

define Phaser |x[k]) =

1. qubit a[s] create an s-qubit temporary register
2. Ur|x)|a) compute f in a

3. Phase |a) perform phase shift by 2ra/2°

4. Urt|x)|a) uncompute f

Step 2 entangles |a) with |x) and is set to the binary expansion of ¢(x) for the desired phase
shifts to |x)

Step 3 changes the phase of |a) and also of |x) because they are entangled

Step 4 unentangles |a) from |x) leaving it in the desired state
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State-dependent amplitude shifts \ 4

We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
is state-dependent such that |x) ® |b) — |x) @ (R(8(x))|b)
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We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
is state-dependent such that |x) ® |b) — |x) ® (R(5(x))|b)
If B(x) =~ 27f(x)/2° and f : Z, — Z; define a subroutine

define Rot |a[s])|b[1]) =
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We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
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State-dependent amplitude shifts

We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
is state-dependent such that |x) ® |b) — |x) @ (R(8(x))|b)

If B(x) ~ 2nf(x)/2° and f : Z,, — Z define a subroutine
define Rot |a[s])|b[1]) =
1. foric[0...5—1]
2. |a;) controlR (%) |b)
The full program is thus
define Rotr |x[k])|b[1]) =
1. qubit a[s]

loop over all s bits in register |a)

apply a controlled rotation to the |b) qubit

create an s-qubit temporary register
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State-dependent amplitude shifts

We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
is state-dependent such that |x) ® |b) — |x) @ (R(8(x))|b)

If B(x) ~ 2nf(x)/2° and f : Z,, — Z define a subroutine
define Rot |a[s])|b[1]) =
1. foric[0...5—1]
2. |a;) controlR (%) |b)
The full program is thus
define Rotr |x[k])|b[1]) =
1. qubit a[s]
2. Ur|x)|a)

loop over all s bits in register |a)

apply a controlled rotation to the |b) qubit

create an s-qubit temporary register
compute f in a
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State-dependent amplitude shifts

We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
is state-dependent such that |x) ® |b) — |x) @ (R(8(x))|b)

If B(x) ~ 2nf(x)/2° and f : Z,, — Z define a subroutine
define Rot |a[s])|b[1]) =
1. foric[0...5—1]
2. |a;) controlR (%) |b)
The full program is thus
define Rotr |x[k])|b[1]) =
1. qubit a[s]
2. Ur|x)|a)
3. Rot |a, b)

loop over all s bits in register |a)

apply a controlled rotation to the |b) qubit

create an s-qubit temporary register
compute f in a

perform rotation by 27a/2°
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State-dependent amplitude shifts

We wish to rotate each term in a superposition by a single qubit rotation R(/3(x)) where (x)
is state-dependent such that |x) ® |b) — |x) @ (R(8(x))|b)

If B(x) ~ 2nf(x)/2° and f : Z,, — Z define a subroutine
define Rot |a[s])|b[1]) =
1. for ic[0...5—1] loop over all s bits in register |a)
2. |a;) controlR (%) |b)
The full program is thus
define Rotr |x[k])|b[1]) =

apply a controlled rotation to the |b) qubit

1. qubit a[s] create an s-qubit temporary register
2. Ur|x)|a) compute f in a

3. Rot |a, b) perform rotation by 27a/2¢

4. Uf_1|x>\a)

uncompute f
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State-dependent amplitude shifts i

define Rots |x[k])|b[1]) =

1. qubit a[s] create an s-qubit temporary register
2. Ur|x)|a) compute f in a

3. Rot |a, b) perform rotation by 2mwa/2°

4. U;1|x>|a) uncompute f
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State-dependent amplitude shifts i

define Rots |x[k])|b[1]) =

1 qubit a[s] create an s-qubit temporary register
2 Ur|x)|a) compute f in a

3 Rot |a, b) perform rotation by 2mwa/2°

4 U;1|x>|a) uncompute f
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