
Today’s outline - February 10, 2022

• Uniform superposition state

• Hamming distance & weight

• Walsh-Hadamard transformation

• Complexity

Reading Assignment: Chapter 7.3-7.4

Homework Assignment #04:
Chapter 5:4,6,9,15,16,17
due Tuesday, February 15, 2022
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The uniform superposition state

An important state of an n qubit system is the so-called uniform superposition state, |s⟩ which
can be written

|s⟩ = A [|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = A
2n−1∑
x=0

|x⟩

The uniform superposition state must be normalized

1 = ⟨s|s⟩ = |A|2
2n−1∑
x ′=0

2n−1∑
x=0

⟨x ′|x⟩ = |A|2
2n−1∑
x=0

⟨x |x⟩ = |A|22n → A =
1√
2n

Since the individual states are orthogonal and normalized, the normalization constant is

What does this mean in practice for systems with 1-3 qubits?

n = 1 : |s⟩ = 1√
2
(|0⟩+ |1⟩)

n = 2 : |s⟩ = 1√
4
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1√

4
(|0⟩+ |1⟩+ |2⟩+ |3⟩)

n = 3 : |s⟩ = 1√
8
(|000⟩+ |001⟩+ |010⟩+|011⟩+|100⟩+ |101⟩+ |110⟩+ |111⟩)

= 1√
8
(|0⟩+ |1⟩+ |2⟩+ |3⟩+ |4⟩+ |5⟩+ |6⟩+ |7⟩)
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What does this mean in practice for systems with 1-3 qubits?

n = 1 : |s⟩ = 1√
2
(|0⟩+ |1⟩)

n = 2 : |s⟩ = 1√
4
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

= 1√
4
(|0⟩+ |1⟩+ |2⟩+ |3⟩)

n = 3 : |s⟩ = 1√
8
(|000⟩+ |001⟩+ |010⟩+|011⟩+|100⟩+ |101⟩+ |110⟩+ |111⟩)

= 1√
8
(|0⟩+ |1⟩+ |2⟩+ |3⟩+ |4⟩+ |5⟩+ |6⟩+ |7⟩)
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The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩

=
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩]

=
1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



The Walsh-Hadamard transformation

From the n = 1 example it is clear that |s⟩ ≡ H|0⟩

Thus the uniform superposition state can be generated by applying the Hadamard
transformation to each of the n qubits

Hn ⊗ Hn−1 ⊗ · · · ⊗ H1|0n0n−1 . . . 01⟩ =
1√
2n

[(|0n⟩+ |1n⟩)(|0n−1⟩+ |1n−1⟩) · · · (|01⟩+ |11⟩)]

=
1√
2n

[|0 . . . 00⟩+ |0 . . . 01⟩+ |0 . . . 10⟩+ · · ·+ |1 . . . 11⟩] = 1√
2n

2n−1∑
x=0

|x⟩ = |s⟩

This transformation, applying H to each of
the qubits is called the Walsh-Hadamard
transformation and can be written

In shorthand notation the application of W
is written

W = H ⊗ H ⊗ · · · ⊗ H

W |0⟩ = 1√
N

N−1∑
x=0

|x⟩, N = 2n

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 10, 2022 3 / 13



Hamming distance

A useful concept is the Hamming distance, dH(x , y) which is defined as the number of bits in
which two bit strings x and y differ

The Hamming weight is the number of bits in which a bit string x differs from a string which
is all zeroes, dH ≡ dH(x , 0)

Operations on two bit strings, x and y , are defined as:

x · y

x ⊕ y

x ∧ y

x ⊕ 11 . . . 1 = ¬x

the number of common bits with a value of 1

the bitwise exclusive-OR of the strings

the bitwise AND of the strings

the bit string that flips all the bits in x

Several identities arise from these definitions

x · y = dH(x ∧ y)

x · y + x · z =2 x · (y ⊕ z)

(x · y) mod 2 = 1
2 (1− (−1)x ·y )

dH(x ⊕ y) =2 dH(x) + dH(y)

2n−1∑
x=0

(−1)x ·y =

{
2n y = 0

0 y ̸= 0
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Bit string identities

x · y = dH(x ∧ y)

x · y + x · z =2 x · (y ⊕ z)

(x · y) mod 2 = 1
2 (1− (−1)x ·y )

dH(x ⊕ y) =2 dH(x) + dH(y)

If we have x = 1011, y = 0111, and z = 0010 we these identities can be easily checked

x · y = 1011 · 0111 = 2 dH(x ∧ y) = dH(0011) = 2

(x · y) mod 2 = (1011 · 0111) mod 2

= 2 mod 2 = 0

1
2 (1− (−1)x ·y ) = 1

2

(
1− (−1)2

)
= 1

2(1− 1) = 0

x · y + x · z = 1011 · 0111 + 1011 · 0010
= 2 + 1 = 3 =2 1

x · (y ⊕ z) = 1011 · (0111⊕ 0010)

= 1011 · 0101 = 1

dH(x ⊕ y) = dH(1011⊕ 0111)

= dH(1100) = 2 =2 0

dH(x) + dH(y) = dH(1011) + dH(0111)

= 3 + 3 = 6 =2 0
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The Walsh-Hadamard matrix

In the standard basis, the matrix representation of W is a 2n × 2n matrix with entries given by

Wsr = Wrs =
1√
2n

(−1)r ·s , 0 ≤ r , s ≤ 2n − 1

This states that for a given string |r⟩ the |r⟩th column and row of W is a set of ±1 values that
depend on the number of common one-bits between |r⟩ and each possible value of |s⟩

The |r⟩th column is the the Walsh-Hadamard transformation applied to |r⟩ and is given by

W |r⟩ =
2n−1∑
s=0

Wrs |s⟩ =
1√
2n

2n−1∑
s=0

(−1)r ·s |s⟩

W |r⟩ = (H ⊗ · · · ⊗ H)(|rn−1⟩ ⊗ · · · ⊗ |r0⟩) =
1√
2n

[|0⟩+ (−1)rn−1 |1⟩]⊗ · · · ⊗ [|0⟩+ (−1)r0 |1⟩]

=
1√
2n

2n−1∑
s=0

(−1)sn−1rn−1 |sn−1⟩ ⊗ · · · ⊗ (−1)s0r0 |s0⟩ =
1√
2n

2n−1∑
s=0

(−1)r ·s |s⟩
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A simple example

Consider a 2-qubit system where we wish to define the Walsh-Hadamard transformation matrix

For each of the 4 possible states |00⟩, |01⟩, |10⟩, and |11⟩ we can generate the transformation
by W |r⟩ = (H ⊗ H)|r⟩

W |00⟩ = 1
2 [(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)] = 1

2 [|00⟩+ |01⟩+ |10⟩+ |11⟩]

W |01⟩ = 1
2 [(|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩)] = 1

2 [|00⟩ − |01⟩+ |10⟩ − |11⟩]

W |10⟩ = 1
2 [(|0⟩ − |1⟩)⊗ (|0⟩+ |1⟩)] = 1

2 [|00⟩+ |01⟩ − |10⟩ − |11⟩]

W |11⟩ = 1
2 [(|0⟩ − |1⟩)⊗ (|0⟩ − |1⟩)] = 1

2 [|00⟩ − |01⟩ − |10⟩+ |11⟩]

W =
1

2



1 1 1 1
1 − 1 1 − 1
1 1 − 1 − 1
1 − 1 − 1 1


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A simple example

Now let’s generate the W matrix using the relation Wsr = Wrs =
1√
2n
(−1)r ·s with

0 ≤ r , s ≤ 2n − 1

|r⟩ |s⟩ Wsr

|00⟩ |00⟩ 1
|00⟩ |01⟩ 1
|00⟩ |10⟩ 1
|00⟩ |11⟩ 1
|01⟩ |01⟩ -1
|01⟩ |10⟩ 1
|01⟩ |11⟩ -1
|10⟩ |10⟩ -1
|10⟩ |11⟩ -1
|11⟩ |11⟩ 1

W =
1

2



1 1 1 1
1 − 1 1 − 1
1 1 − 1 − 1
1 − 1 − 1 1



This is the identical matrix generated by the first method
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Quantum parallelism

Suppose that we have two registers of qubits, |x⟩ and |y⟩ of length n and m, respectively

A linear transformation Uf which acts on the combined registers |x⟩ ⊗ |y⟩ acts on the registers
as Uf : |x , y⟩ → |x , y ⊕ f (x)⟩

This operator can also act on a superposition
∑

ax |x⟩ as

Uf :
∑
x

ax |x , 0⟩ −→
∑
x

ax |x , f (x)⟩

Apply the Uf operator to the uniform superposition state obtained from the Walsh-Hadamard
transformation

Uf : (W |0⟩)⊗ |0⟩ = 1√
N

N−1∑
x=0

|x⟩|0⟩ −→ 1√
N

N−1∑
x=0

|x⟩|f (x)⟩

The resultant state is one where all 2n |f (x)⟩ values entangled with their corresponding input
values, |x⟩

In principle, it is now possible to operate on all possible combinations simultaneously in an
effect called quantum parallelism but other transformations must be applied to make it useful
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The Toffoli gate

The Toffoli gate, computes the conjunction of two values, |x⟩ and |y⟩ with the output going
to a register initially set to |0⟩

First construct the universal superposition of the two input qubits

W (|00⟩)⊗ |0⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)⊗ |0⟩

= 1
2(|000⟩+ |010⟩+ |100⟩+ |110⟩)

Applying the Toffoli gate, we have

T [W |00⟩ ⊗ |0⟩] = T
[
1
2(|000⟩+ |010⟩+ |100⟩+ |110⟩)

]
= 1

2 [|000⟩+ |010⟩+ |100⟩+ |111⟩]

0

x

y

x

y

x y

While the entire truth table for the Toffoli gate is present in this entangled state, it is only
possible to extract one value with a measurement of |x⟩ ⊗ |y⟩
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Circuit complexity

A circuit family C = {Cn} is made up of circuits Cn indexed by their maximum input size, the
circuit C5 handles 5-qubit sized inputs

The circuit complexity of a circuit is the number of simple gates in the circuit

The complexity of a circuit family is the asymptotic number of simple gates expresesd in terms
of the input size

Circuit complexity is important as it relates directly to the amount of resources required to
perform the computation, thus a good model of circuit complexity is required when planning a
quantum circuit

A valid model for circuit complexity must be both uniform and consistent

A quantum circuit family C is consistent if
its circuits Cn gove consistent results: for all
m < n, applying Cn to input |x⟩ of size m
must give the same result as applying Cm to
the same input

A quantum circuit family C is polynomially
uniform if there exists a polynomial f (n) and
a classical program that constructs the cir-
cuit Cn in at most O(f (n)) steps
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Query complexity

The first quantum algorithms solve “black box” or “oracle” problems, where it is only possible
to solve the problem by observing the output of the black box

A quantum black box behaves like the transformation Uf

Uf :
∑
x

αx |x⟩|y⟩ −→
∑
x

αx |x , f (x)⊕ y⟩

The query complexity is defined as the number of times that the black box must be queried to
solve the problem

If the query complexity of a black box is low, it is only of utility if its implementation is
efficient, however, this approach is useful in setting lower bounds on the circuit complexity

If the query complexity is Ω(N), then the circuit complexity must be at least Ω(N)

The value of black box problems in quantum computing was to demonstrate that a quantum
algorithm has lower query complexity than a classical circuit that solves the same problem
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efficient, however, this approach is useful in setting lower bounds on the circuit complexity

If the query complexity is Ω(N), then the circuit complexity must be at least Ω(N)

The value of black box problems in quantum computing was to demonstrate that a quantum
algorithm has lower query complexity than a classical circuit that solves the same problem
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Communication complexity

For communication problems, a complexity measure is the miniumum number of qubits that
must be transmitted to accomplish a task

For example in the dense coding algorithm, complexity is related to the number of qubits that
must be sent in order to communicate n bits of information

Classical protocols require the transmission of n bits while n/2 qubits plus an additional n/2
EPR pairs (or ebits) are needed for a quantum protocol

For quantum teleportation of n qubits, the number of classical bits sent is 2n plus an
additional n ebits
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