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14 T3 H KB)

0 Q ‘ Q

Qo B

This circuit can be expanded in terms of the general phase shift and rotation gates plus Cyot,

however it requires 25 single qubit gates and 12 C,,; gates

For a general k-qubit controlled arbitrary gate, one needs 5% single qubit gates plus %(5" -1)

Chot gates which is not the most efficient implementation

Suppose we want to apply a transformation when the control
qubit is O or a specific combination of 1's and 0's

This is possible by adding two X gates to the control bit
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x is a (k + 1)-qubit string where the it qubit |x;) is either |0) or |1) and the other qubits are
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differs between |x;) and |x;+1) and B; as the shared pattern of all the the other bits in the two

vectors
Un, is an operator defined as U [(m) 0
me 0 VN—m
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Let N = 2" and define the standard basis as {|x0), ..., |xy—1)} such that |x;) and |x;;1) differ
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We can define a suitable Gray code by saying that for 0 < j < N — 2, define j; as the bit that
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Un, is an operator defined as

[(m 0
where /(™) is the m x m identity matrix and Viy_, is an (N — Un = ( 0 Vnem )
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Implementing general unitary transformations V

As we have seen, any unitary transformation is just a rotation of the 2”-dimensional vector
space associated with an n-qubit system

Let N = 2" and define the standard basis as {|x0), ..., |xy—1)} such that |x;) and |x;;1) differ
only by a single bit (called Gray code)

We can define a suitable Gray code by saying that for 0 < j < N — 2, define j; as the bit that

differs between |x;) and |x;+1) and B; as the shared pattern of all the the other bits in the two
vectors

Un, is an operator defined as

[(m 0
where /(™) is the m x m identity matrix and Viy_, is an (N — Un = ( 0 Vnem >
m) x (N — m) unitary matrix with 0 < m < N —2

Start with m = N — 2 at its maximum value and the smallest
possible unitary matrix V5, representing only 2 qubits
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Implementing general unitary transformations V

As we have seen, any unitary transformation is just a rotation of the 2”-dimensional vector
space associated with an n-qubit system

Let N = 2" and define the standard basis as {|x0), ..., |xy—1)} such that |x;) and |x;;1) differ
only by a single bit (called Gray code)

We can define a suitable Gray code by saying that for 0 < j < N — 2, define j; as the bit that

differs between |x;) and |x;+1) and B; as the shared pattern of all the the other bits in the two
vectors

Un, is an operator defined as

[(m 0
where /(™) is the m x m identity matrix and Viy_, is an (N — Un = ( 0 Vnem >
m) x (N — m) unitary matrix with 0 < m < N —2

J(N=2) ¢
Start with m = N — 2 at its maximum value and the smallest Un—2 = ( 0 Vs
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Implementing general unitary transformations V

As we have seen, any unitary transformation is just a rotation of the 2”-dimensional vector
space associated with an n-qubit system

Let N = 2" and define the standard basis as {|x0), ..., |xy—1)} such that |x;) and |x;;1) differ
only by a single bit (called Gray code)

We can define a suitable Gray code by saying that for 0 < j < N — 2, define j; as the bit that

differs between |x;) and |x;+1) and B; as the shared pattern of all the the other bits in the two
vectors

Un, is an operator defined as

[(m 0
where /(™) is the m x m identity matrix and Viy_, is an (N — Un = ( 0 Vnem >
m) x (N — m) unitary matrix with 0 < m < N —2

J(N=2) ¢
Start with m = N — 2 at its maximum value and the smallest Un—2 = ( 0 Vs
possible unitary matrix V5 representing only 2 qubits

Applying this operator is identical to applying /\ﬁ( Vo where x = xy_2 and j = jy_»
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Generating the general unitary operator V
Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors
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Generating the general unitary operator V
Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Un-1 |Xm71>
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|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
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Generating the general unitary operator

Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Um71|Xm71> = am71|mel> +o aN—1|XN—1>

The coefficient ayy_1 can be made real by applying a global phase shift so we need to find a
unitary transformation W,, that takes |vi,—1) to |xm—1) and does not affect basis elements
%), s [Xm1)
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|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Um71|Xm71> = am71|mel> +o aN—1|XN—1>

The coefficient ayy_1 can be made real by applying a global phase shift so we need to find a
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Generating the general unitary operator \id

Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Um71|Xm71> = am71|mel> +o aN—1|XN—1>

The coefficient ayy_1 can be made real by applying a global phase shift so we need to find a
unitary transformation W,, that takes |vi,—1) to |xm—1) and does not affect basis elements
%), s [Xm1)

This transformation will then have the property that
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Generating the general unitary operator \id

Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Um71|Xm71> = am71|mel> +o aN—1|XN—1>

The coefficient ayy_1 can be made real by applying a global phase shift so we need to find a
unitary transformation W,, that takes |vi,—1) to |xm—1) and does not affect basis elements
%), s [Xm1)

This transformation will then have the property that
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Generating the general unitary operator \id

Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Um71|Xm71> = am71|mel> +o aN—1|XN—1>

The coefficient ayy_1 can be made real by applying a global phase shift so we need to find a
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This transformation will then have the property that
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Generating the general unitary operator \id

Given the unitary matrix Up_1, and the basis {|x0), ..., [Xm—1),-.., |xn—1)}, the basis vector
|xm—1) is the first on which the operator has a non-trivial action since the identity matrix is
(m—1) x (m—1) and Viy_(m_1) mixes the last N — (m — 1) basis vectors

‘mel> = Um71|Xm71> = am71|mel> +o aN—1|XN—1>

The coefficient ayy_1 can be made real by applying a global phase shift so we need to find a
unitary transformation W,, that takes |vi,—1) to |xm—1) and does not affect basis elements
%), s [Xm1)

This transformation will then have the property that
Un=WnUn1 — Cpn=W.' — Up1=CnlUn — U=Uy=C1--- Cy_oUn_2
W, is defined iteratively starting by rewriting |v,—1) as
[Vm—1) = am—1|Xm—-1) + -+ + cn—2 cos(HN_z)ei¢N—2|xN_2) + cy—2sin(On—1)|xn-1)
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Generating the general unitary operator (cont.) A\

‘mel> = 3m71|Xm71> + -+ aN—1|XN—1>

= am—1|Xm-1) + -+ cn_2 COS(9N72)ei¢N*2|XN,2> + cy—2sin(On—1)|xn-1)
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Generating the general unitary operator (cont.) \

‘mel> = 3m71|Xm71> + -+ aN—1|XN—1>

= am—1|Xm-1) + -+ cn_2 COS(9N72)ei¢N*2|XN,2> + cy—2sin(On—1)|xn-1)

an_2 = |ay_o|e'¥N-2
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Generating the general unitary operator (cont.) \id

‘mel> = 3m71|Xm71> + -+ aN—1|XN—1>

= am—1|Xm-1) + -+ cn_2 COS(9N72)ei¢N*2|XN,2> + cy—2sin(On—1)|xn-1)

an_2 = |ay_o|e'¥N-2

cN—2 = \/\aN—z\z +lan-1?
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Generating the general unitary operator (cont.) \id

‘mel> = amfl‘xmfl> + -+ aN—1|XN—1>
= am_l\xm_1> + -+ Ccn_2 COS(9N72)ei¢N*2|XN,2> + cn_o Sin(9N71)|XN,1>

an_s = |an_o|e’n—2 cos(On_2) = lan—2|
CN—2

cN—2 = \/\aN—z\z +lan-1?

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 8/14



Generating the general unitary operator (cont.)

‘mel> = amfl‘xmfl> + -+ aN—1|XN—1>

= am_l\xm_1> + -+ N2 COS(9N72)ei¢N*2|XN,2> + cn—2 Sin(9N71)|XN,1>

i an—
an—2 = |an_o|€"?V2 cos(Oy_z) = lan—|
CN—2
2 2 - _ lan—1|
CN-2 = \/\aN—ﬂ + lan-1] sin(On-2) =
CN-2
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Generating the general unitary operator (cont.) i

Vm—1) = am—1|Xm—-1) + - + an—1|xn—-1)

= am—1|Xm-1) + -+ cn_2 COS(9N72)ei¢N*2|XN,2> + cy—2sin(On—1)|xn-1)

an—2 = |an_o|€"?V2 cos(Ony_2) = lan—|
CN—-2
2 2 : _ Jan—1]

CN-2 = \/\aN—z\ + lan-1] sin(On—2) =
CN—2

With these definitions, we can write a multiply controlled set of single qubit operators that
acts on |vp,—1) to eliminate the |xy_1) term
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Generating the general unitary operator (cont.) i

Vm—1) = am—1|Xm—-1) + - + an—1|xn—-1)

= am—1|Xm-1) + -+ cn_2 COS(9N72)ei¢N*2|XN,2> + cy—2sin(On—1)|xn-1)

an_2 = |ay_o|eN-2 cos(On—2) = an—2]
CN-2
2 2 |an—1]

en-2 = /lan—al? + lan—1 sin(0-—2) =
CN—-2

With these definitions, we can write a multiply controlled set of single qubit operators that
acts on |vp,—1) to eliminate the |xy_1) term

Jn Jn—2
/\ (On—2) /\ —AN-2)|Vm—1) = am—1|Xm—1) + - + ay_a|Xn_2), an_» = cn_2

XN—2
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Generating the general unitary operator (cont.)

Vm—1) = am—1|Xm—-1) + - + an—1|xn—-1)

= am—1|Xm-1) + -+ cn_2 COS(9N72)6’.¢N*2|XN,2> + cy—2sin(On—1)|xn-1)

an_2 = |ay_o|eN-2 cos(On—2) = an—2]
CN-2
2 2 |an—1]

en-2 = /lan—al? + lan—1 sin(0-—2) =
CN—-2

With these definitions, we can write a multiply controlled set of single qubit operators that
acts on |vp,—1) to eliminate the |xy_1) term

Jn Jn—2
/\ (On—2) /\ —AN-2)|Vm—1) = am—1|Xm—1) + - + ay_a|Xn_2), an_» = cn_2

XN—2

The K(—¢n_2) eliminates the phase factor in front of |xy_2)
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Generating the general unitary operator (cont.)

Vm—1) = am—1|Xm—-1) + - + an—1|xn—-1)

= am—1|Xm-1) + -+ cn_2 COS(9N72)6’.¢N*2|XN,2> + cy—2sin(On_1)|xn-1)

: a
N2 = |an_a|ei®n-2 cos(fn_) = 12821
CN-2
2 2 |an-—1|
en-2 = /lan—al? + lan—1 sin(0-—2) =
CN—2

With these definitions, we can write a multiply controlled set of single qubit operators that
acts on |vp,—1) to eliminate the |xy_1) term

in Jn—2
/\ (On—2) /\ —AN-2)|Vm—1) = am—1|Xm—1) + - + ay_a|Xn_2), an_» = cn_2
XN—2
The K(—¢n_2) eliminates the phase factor in front of |xy_») and the R(6y_») rotates
amplitude from |xy_1) to |xy_2)
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Generating the general unitary operator (cont.) A\

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation
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Generating the general unitary operator (cont.) V

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator
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Generating the general unitary operator (cont.) \id

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2
W=\ ROmn-1) N\ K(=¢m-1) -+ )\ ROn-2) \ K(—¢n—2)
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Generating the general unitary operator (cont.) \id

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2

W= A\ ROm-1) N\ K(~6m-1)--- \ ROn-2) /\ K(~dn_2)
Xm—1 Xm—1 XN—2 XN—2

aj = |a;|ei¢f,
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Generating the general unitary operator (cont.) \id

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2

W= A R(0m-1) N\ K(=ém-1)--- /\ R(On-2) \ K(—dn-2)
Xm—1 Xm—1 XN—2 XN—2

aj = |a;|ei¢f, ai = ¢,
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Generating the general unitary operator (cont.) \id

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2
W=\ ROmn-1) N\ K(=¢m-1) -+ )\ ROn-2) \ K(—¢n—2)

ai=laile’”, ai=c, c=1/lail®+ai1l?
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Generating the general unitary operator (cont.) \id

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2
W= A R(0m-1) N\ K(=ém-1)--- /\ R(On-2) \ K(—dn-2)
Xm—1 Xm—1 XN—2 XN—2
ai = laj|e’®, adi=c, ¢ =1/|ail2+|air1|?, cosb; = |a—':|,

Ci
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Generating the general unitary operator (cont.) \id

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2
W, = /\ R(Om-1) /\ K(—=¢m-1)--- /\ R(On-2) /\ K(—én—2)
Xm—1 Xm—1 XN—2 XN—2
o lei® o _ ) > Cail o e
a;j = lajle'?, ai=c¢i, ¢ =\/|ail>+ |ai+1]?, cosb; = —, sinfi=—-

Ci Ci
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Generating the general unitary operator (cont.) V

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2
W, = /\ R(Om-1) /\ K(—=¢m-1)--- /\ R(On-2) /\ K(—én—2)
Xm—1 Xm—1 XN—2 XN—2
o lei® o _ ) > Cail o e
a;j = lajle'?, ai=c¢i, ¢ =\/|ail>+ |ai+1]?, cosb; = —, sinfi=—-

Ci Ci

This procedure guarantees a general unitary transformation but it is exponentially expensive
and therefore is of limited value
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Generating the general unitary operator (cont.) V
The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern By_» are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|Vm—1) = a,|Xm—1) = |xm—1) and this results in a composite operator

Jm—1 Jm—1 Jn—2 Jn—2
W=\ ROmn-1) N\ K(=¢m-1) -+ )\ ROn-2) \ K(—¢n—2)

” / ail . 31|
aj = laile'”, ai=c, ¢ =\/lai>+ai1l?, cosf; = |C'_|, sin 0 = 'Ciﬂ
1

1

This procedure guarantees a general unitary transformation but it is exponentially expensive
and therefore is of limited value

Making a practical quantum computer requires a more clever approach to take advantage of
the inherent efficiency in the computations
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A 3-bit example V

Consider a 3-qubit system where we wish to establish a Grey code basis
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A 3-bit example V
Consider a 3-qubit system where we wish to establish a Grey code basis

{ J111), |o11), |001), |
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A 3-bit example V
Consider a 3-qubit system where we wish to establish a Grey code basis
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A 3-bit example V
Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111), |011), |001), |000), |010), }

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 10/ 14



A 3-bit example /

Consider a 3-qubit system where we wish to establish a Grey code basis

{ [111), [o11), [o01), [000), 010), |110), )

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 10/ 14



A 3-bit example /

Consider a 3-qubit system where we wish to establish a Grey code basis

{ [111), o11), [o01), [000), [010), [110}, [100), )

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 10/ 14



A 3-bit example /

Consider a 3-qubit system where we wish to establish a Grey code basis

{ [111), fo11), [001), [000), [010), [110), [100), [101) }

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 10/ 14
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{ |111), [011), |001), [000), [010), [110), [100), |101) }
{ x)  ba) ) ba), b)) ), )}

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 10/ 14



A 3-bit example i

Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111), [011), |001), [000), [010), [110), [100), |101) }
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Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111), |o11), |o01), [000), [010), |[110), [100), [101) }
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ 111, jo1), [ooL), 000), [010), [i10),
{ |X0>7 |X1>7 |X2>7 ‘X3>7 ’X4>7 |X5>7

In thiscase, n=3, N=2"=8,and0< m<N-2=6

Let's look at the U and Us operators
1000000

01 00O0TO0
001 00O
Us = 000100
0 00O0OT1TFQO
0 00O0O0T1
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ 111, jo1), [ooL), 000), [010), [i10),
{ |X0>7 |X1>7 |X2>7 ‘X3>7 ’X4>7 |X5>7

In thiscase, n=3, N=2"=8,and0< m<N-2=6
Let's look at the U and Us operators
1000 00O0O0TU O

01000000
00100000
| 00010000
® "l oo0oo0oo01000
000007100
000000
00000O00O
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ 111, jo1), [ooL), 000), [010), [i10),
{ |X0>7 |X1>7 |X2>v ‘X3>7 ’X4>7 |X5>7

In thiscase, n=3, N=2"=8,and0< m<N-2=6
Let's look at the U and Us operators
1000 00O0O0TU O

01000000
00100000
00010000

Y=10000100o0 Us =
000007100
000000 ab
00000O0GO0c d
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111), |o11), |o01), [000), [010), |[110), [100), [101) }
{ ) Pa), ), Ixs), b)), Ixe),  Ixr) )

In thiscase, n=3, N=2"=8,and0< m<N-2=6

Let's look at the U and Us operators

100 0O0O0O0O 10000

01 00O0O0CO0OTP O 01000

001 00O0O0TO O 00100
Us = 000 100O0O0TO Us = 00010
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0000O0OT1O0TP O

0 00O0O0Oaob

000O0O0GO0OTCd
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111), |o11), |o01), [000), [010), |[110), [100), [101) }
{ ) Pa), ), Ixs), b)), Ixe),  Ixr) )

In thiscase, n=3, N=2"=8,and0< m<N-2=6
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111), |o11), |o01), [000), [010), |[110), [100), [101) }
{ ) Pa), ), Ixs), b)), Ixe),  Ixr) )

In thiscase, n=3, N=2"=8,and0< m<N-2=6

Let's look at the U and Us operators

100 0O0O0O0O 1 000O0O0TO0OTO
01 00O0O0CO0OTP O 01 00O0OOTGO0OTO O
001 00O0O0TO O 001 0O0O0O0TO O
Us = 000 100O0O0TO Us = 0001 0O0O0TO
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A 3-bit example (cont.)

Our goal is to generate a universal operator
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A 3-bit example (cont.)

Our goal is to generate a universal operator

U=y = G- Cb(]@
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A 3-bit example (cont.)

Our goal is to generate a universal operator 100000O0TO
0100 0O0O0TO
U=Uy=0Ci - CoUs 001 00 O0O0O0TDO

1
Starting with the Us matrix, we want an op- Us = 000 0000
tor Ws that satisfies WsUs = U, 000O010O0TU O
erator W that satisfies WgUs = Us 50000 ¢ p o
0 00 0O r s t
00000 U VvV W
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=Uy=C - ClUg

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=Uy=C - ClUg

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

|vs) = Us|xs)
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

|vs) = Us|xs)
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

|vs) = Us|xs) = o|xs) + r|xs) + u|x7)
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

Now rewrite the coefficients using
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

Now rewrite the coefficients using
ag = |r|e'%s,
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

Now rewrite the coefficients using

ag = |rle’?s, o= \/|r]2 +|ul?
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op- Us
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

Now rewrite the coefficients using

ag = |rle’?s, o= \/|r]2 +|ul?

cos g = %

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing

OO O OO Ooo

([oleloelNolNoNoll o]

el elolNeNeolloeNe]

el eNoNelloNoNe]
OO O OOOoOo
S S 0 OO O oo
< bW T OO O o o

|vs) = Us|xs) = o|xs) + r|xs) + u|x7)

February 03, 2022

S~ ooocoo

11/14



A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op-
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

Now rewrite the coefficients using

ag = |rle’?s, o= \/|r]2 +|ul?

Il ing, = 4
G sin 96 =g

cos g = -

Us

I
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|vs) = Us|xs) = o|xs) + r|xs) + u|x7)
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = G- Cb(]@

Starting with the Us matrix, we want an op-
erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write

Us mixes the last three basis vectors

Now rewrite the coefficients using

ag = |rle’?s, o= \/|r]2 +|ul?

Il ing, = 4
G sin 96 =g

cos g = -

Us

Il
o000 OO
Ocoo0oocoor o
coocoocoor oo
coocoor—~ooo
cococorroooo
T N0 OO0 oo
S LWT OO0 oo
S~ ooocoo

[vs) = Us|xs) = olxs) + rlxe) + ulx7)
= o|xs) + c6 cos g |xs) + c Sin O |x7)
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A 3-bit example (cont.)

Our goal is to generate a universal operator é (1) 8 8 8 8 8 8
othma ek 00010000

Starting with the Us matrix, we want an op- Us = 0000100 0

erator Wg that satisfies WgUs = Ug 00000 o0 p g

The Us operator leaves all the basis vectors 0 0000 r s t

from |xg) - - - |xa) alone so we can write 00000 Uuv w

Us mixes the last three basis vectors

Now rewrite the coefficients using |vs) = Us|xs) = o|xs) + r|xe) + ulx7)

— ide — ./ 2 2
% = |rle”™, < Il + ful = o|xs) + c6 cos g |xs) + c Sin O |x7)
cost%:%, sin96:|c%|

AR(6) \ K(=6)|vs)
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A 3-bit example (cont.)

Our goal is to generate a universal operator é (1) 8 8 8 8 8 8
othma ek 00010000
Starting with the Us matrix, we want an op- Us = 0000100 0
erator Wg that satisfies WgUs = Ug 00000 o0 p g
The Us operator leaves all the basis vectors 0 0000 r s t
from |xg) - - - |xa) alone so we can write 00000 Uuv w
Us mixes the last three basis vectors
Now rewrite the coefficients using vs) = Us|xs) = o|xs) + rlxe) + ulx7)
— iPe — JIr2 2
2 ]r\e| | B ‘rl‘ |+ ul = o|xs) + c6 cos g |xs) + c Sin O |x7)
r . u
cos g = o sinfg = o o i
A\R(6) /\ K(=66)|vs) = olxs) + c5|x6)
X6 X6
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A 3-bit example (cont.)
Our goal is to generate a universal operator

U=y = C1---C6U6
Starting with the Us matrix, we want an op-

erator Wg that satisfies WgUs = Ug

The Us operator leaves all the basis vectors
from |xg) - - - |xa) alone so we can write
Us mixes the last three basis vectors

Now rewrite the coefficients using

ag = |rle’?s, o= \/|r]2 +|ul?

_ |y
Co

cos g = % sin fg

This eliminates the |x7) term and can
be repeated to eliminate the |xg) term

Carlo Segre (lllinois Tech)
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Universally approximating set of gates \ 4

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any

single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator

Take the Hadamard and the C,o; gates and add two phase gates P% and P%
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator

Take the Hadamard and the C,o; gates and add two phase gates P% and P%
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator

Take the Hadamard and the C,o; gates and add two phase gates P% and P%
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator

Take the Hadamard and the C,o; gates and add two phase gates P% and P%
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator

Take the Hadamard and the C,o; gates and add two phase gates P% and P%
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Universally approximating set of gates \ i

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 279, there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the C,.¢, we can prepare any unitary operator

Take the Hadamard and the C,o; gates and add two phase gates P% and P%

P
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Making approximating set of gates N

An arbitrary transformation can be viewed as a rotation of the qubit on the Bloch sphere by
any amount
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Making approximating set of gates V

An arbitrary transformation can be viewed as a rotation of the qubit on the Bloch sphere by
any amount

In order to make an approximating set to an arbitrary precision, we need to be able to combine
the 4 gates to get as close as desired to any rotation, even irrational ones
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Making approximating set of gates V

An arbitrary transformation can be viewed as a rotation of the qubit on the Bloch sphere by
any amount

In order to make an approximating set to an arbitrary precision, we need to be able to combine
the 4 gates to get as close as desired to any rotation, even irrational ones
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Making approximating set of gates Vv

An arbitrary transformation can be viewed as a rotation of the qubit on the Bloch sphere by
any amount

In order to make an approximating set to an arbitrary precision, we need to be able to combine
the 4 gates to get as close as desired to any rotation, even irrational ones

Why do we only use rational rotations, those where for some integer m, R™ = I?

When working on the Bloch sphere, rational rotations around single axes are able to construct
irrational rotations in three dimensions

P% is a rotation of 7 about the z-axis of the Bloch sphere
S= HP%H is a rotation of 7 about the x-axis

It can be shown that simply combining these two rational rotations V = P§5 gives an
irrational rotation
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Making approximating set of gates (cont.) YV

Since V is irrational, any rotation can be approximated by a suitable power of V to within
arbitrary precision
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Making approximating set of gates (cont.) V
Since V is irrational, any rotation can be approximated by a suitable power of V' to within
arbitrary precision

By transforming V as HVH we create an irrational rotation about an orthogonal axis and with

these two, any operation can be constructed, recall that another way of generating an arbitrary
transformation was
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Making approximating set of gates (cont.) \ 74

Since V is irrational, any rotation can be approximated by a suitable power of V' to within
arbitrary precision

By transforming V as HVH we create an irrational rotation about an orthogonal axis and with
these two, any operation can be constructed, recall that another way of generating an arbitrary
transformation was

W = K(0)T(a)R(B)T(7)
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Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 03, 2022 14 /14



Making approximating set of gates (cont.) \ i

Since V is irrational, any rotation can be approximated by a suitable power of V' to within
arbitrary precision

By transforming V as HVH we create an irrational rotation about an orthogonal axis and with

these two, any operation can be constructed, recall that another way of generating an arbitrary
transformation was

W= K@) T()R(B)T(v)
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Making approximating set of gates (cont.) \ i

Since V is irrational, any rotation can be approximated by a suitable power of V' to within
arbitrary precision

By transforming V as HVH we create an irrational rotation about an orthogonal axis and with

these two, any operation can be constructed, recall that another way of generating an arbitrary
transformation was

W= K@) T()R(B)T(v)
T(«) rotates about the z-axis and R([3) rotates about the y-axis

So we have that these 4 gates constitute a universally approximating set of gates

This is one possible set, others also exist
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