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Multiply controlled transformations

Controlled operations can be generalized to more than one control bit

∧
k Q represents a (k + 1)-qubit transformation that applied Q to the

low order qubit if all of the other qubits are 1

The CCnot , also called the Toffoli gate,
∧

2 X negates the last bit if the
first two are 1

The arbitrary Q transformation can also be controlled by multiple qubits

The
∧

2Q three-qubit gate can be obtained by adding control of the Q0, Q1, and Q2 by the
third qubit

0

1

2

Q0Q1Q2

T(   )δ

2 K (  )δ

2
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Multiply controlled transformations (cont.)

0

1

2

Q0Q1Q2

T(   )δ

2 K (  )δ

2

This circuit can be expanded in terms of the general phase shift and rotation gates plus Cnot ,
however it requires 25 single qubit gates and 12 Cnot gates

For a general k-qubit controlled arbitrary gate, one needs 5k single qubit gates plus 1
2(5

k − 1)
Cnot gates which is not the most efficient implementation

Suppose we want to apply a transformation when the control
qubit is 0 or a specific combination of 1’s and 0’s

This is possible by adding two X gates to the control bit

X X

Q
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Arbitrary controlled transformations

These multiply controlled qubit gates will permit arbitrary circuits

Suppose we have a (k + 1)-qubit system to which we wish to apply transformation Q on the
i th qubit when all the other qubits are in a specific basis state

The transformation Q is thus applied to a 2-dimensional subspace spanned by the vector with
xi and its flipped state in the standard basis, x̂i{
|sk . . . si+1xi si−1 . . . s0⟩, |sk . . . si+1x̂i si−1 . . . s0⟩

}
, x̂i = xi⊕1 (XOR) −→

{
|x⟩, |x̂⟩

}
x̂ = x⊕2i

It will be useful to define two different transformations using a k-qubit string and a single
qubit transformation, Q, on a separate qubit, both of which can be represented as

∧i
x Q

x is a (k + 1)-qubit string where the i th qubit |xi ⟩ is either |0⟩ or |1⟩ and the other qubits are
defined as sk . . . si+1si−1 . . . s0

If |xi ⟩ = |0⟩, Q|xi ⟩ is applied but if |xi ⟩ = |1⟩, XQX |xi ⟩ is applied

This operator has the property that:
∧i

x̂ Q =
∧i

x Q̂ =
∧i

x XQX
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Example 5.4.1

A simplified example of the general
∧i

x Q transformation is that of a 2-qubit system |b1b0⟩

Operator Initial State Action Final State Overall Effect

∧0
10 X

|00⟩ I |b0⟩ |00⟩

Cnot : |b1⟩ctl → |b0⟩tgt
|01⟩ I |b0⟩ |01⟩
|10⟩ X |b0⟩ |11⟩
|11⟩ XXX |b0⟩ |10⟩

∧0
11 X

|00⟩ I |b0⟩ |00⟩

Cnot : |b1⟩ctl → |b0⟩tgt
|01⟩ I |b0⟩ |01⟩
|10⟩ XXX |b0⟩ |11⟩
|11⟩ X |b0⟩ |10⟩

∧0
00 X

|00⟩ X |b0⟩ |01⟩

Cnot : |b̂1⟩ctl → |b0⟩tgt
|01⟩ XXX |b0⟩ |00⟩
|10⟩ I |b0⟩ |10⟩
|11⟩ I |b0⟩ |11⟩

Note that
∧1

01 X has the effect of Cnot : |b0⟩ctl → |b1⟩tgt
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Implementing general unitary transformations

As we have seen, any unitary transformation is just a rotation of the 2n-dimensional vector
space associated with an n-qubit system

Let N = 2n and define the standard basis as {|x0⟩, . . . , |xN−1⟩} such that |xi ⟩ and |xi+1⟩ differ
only by a single bit (called Gray code)

We can define a suitable Gray code by saying that for 0 ≤ i ≤ N − 2, define ji as the bit that
differs between |xi ⟩ and |xi+1⟩ and Bi as the shared pattern of all the the other bits in the two
vectors

Um is an operator defined as

where I (m) is the m×m identity matrix and VN−m is an (N −
m)× (N −m) unitary matrix with 0 ≤ m ≤ N − 2

Start with m = N − 2 at its maximum value and the smallest
possible unitary matrix V2 representing only 2 qubits

Um =

(
I (m) 0
0 VN−m

)
UN−2 =

(
I (N−2) 0

0 V2

)

Applying this operator is identical to applying
∧j

x V2 where x = xN−2 and j = jN−2
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Generating the general unitary operator

Given the unitary matrix Um−1, and the basis {|x0⟩, . . . , |xm−1⟩, . . . , |xN−1⟩}, the basis vector
|xm−1⟩ is the first on which the operator has a non-trivial action since the identity matrix is
(m − 1)× (m − 1) and VN−(m−1) mixes the last N − (m − 1) basis vectors

|vm−1⟩ = Um−1|xm−1⟩ = am−1|xm−1⟩+ · · ·+ aN−1|xN−1⟩

The coefficient aN−1 can be made real by applying a global phase shift so we need to find a
unitary transformation Wm that takes |vm−1⟩ to |xm−1⟩ and does not affect basis elements
|x0⟩, . . . , |xm−1⟩

This transformation will then have the property that

Um = WmUm−1 −→ Cm = W−1
m −→ Um−1 = CmUm −→ U = U0 = C1 · · ·CN−2UN−2

Wm is defined iteratively starting by rewriting |vm−1⟩ as

|vm−1⟩ = am−1|xm−1⟩+ · · ·+ cN−2 cos(θN−2)e
iϕN−2 |xN−2⟩+ cN−2 sin(θN−1)|xN−1⟩
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Generating the general unitary operator (cont.)

The multiply controlled gate ensures that only the two basis vectors with the identical qubit
pattern BN−2 are affected by this transformation

This same procedure is repeated for the next two lowest order qubit states until
|vm−1⟩ = a′m|xm−1⟩ ≡ |xm−1⟩ and this results in a composite operator

Wm =

jm−1∧
xm−1

R(θm−1)

jm−1∧
xm−1

K (−ϕm−1) · · ·
jN−2∧
xN−2

R(θN−2)

jN−2∧
xN−2

K (−ϕN−2)

ai = |ai |e iϕi , a′i = ci , ci =
√
|ai |2 + |ai+1|2, cos θi =

|ai |
ci

, sin θi =
|a′i+1|
ci

This procedure guarantees a general unitary transformation but it is exponentially expensive
and therefore is of limited value

Making a practical quantum computer requires a more clever approach to take advantage of
the inherent efficiency in the computations
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A 3-bit example

Consider a 3-qubit system where we wish to establish a Grey code basis

{ |111⟩, |011⟩, |001⟩, |000⟩, |010⟩, |110⟩, |100⟩, |101⟩ }
{ |x0⟩, |x1⟩, |x2⟩, |x3⟩, |x4⟩, |x5⟩, |x6⟩, |x7⟩ }

In this case, n = 3, N = 2n = 8, and 0 ≤ m ≤ N − 2 = 6

Let’s look at the U6 and U5 operators

U6 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 a b
0 0 0 0 0 0 c d


U5 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 o p q
0 0 0 0 0 r s t
0 0 0 0 0 u v w


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{ |111⟩, |011⟩, |001⟩, |000⟩, |010⟩, |110⟩, |100⟩, |101⟩ }
{ |x0⟩, |x1⟩, |x2⟩, |x3⟩, |x4⟩, |x5⟩, |x6⟩, |x7⟩ }

In this case, n = 3, N = 2n = 8, and 0 ≤ m ≤ N − 2 = 6

Let’s look at the U6 and U5 operators

U6 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 a b
0 0 0 0 0 0 c d


U5 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0

o p q

0 0 0 0 0

r s t

0 0 0 0 0

u v w
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A 3-bit example (cont.)

Our goal is to generate a universal operator

U = U0 = C1 · · ·C6U6

Starting with the U5 matrix, we want an op-
erator W6 that satisfies W6U5 = U6

The U5 operator leaves all the basis vectors
from |x0⟩ · · · |x4⟩ alone so we can write

U5 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 o p q
0 0 0 0 0 r s t
0 0 0 0 0 u v w



U5 mixes the last three basis vectors

Now rewrite the coefficients using
a6 = |r |e iϕ6 , c6 =

√
|r |2 + |u|2

cos θ6 =
|r |
c6
, sin θ6 =

|u|
c6

This eliminates the |x7⟩ term and can
be repeated to eliminate the |x6⟩ term

|v5⟩ = U5|x5⟩ = o|x5⟩+ r |x6⟩+ u|x7⟩
= o|x5⟩+ c6 cos θ6|x6⟩+ c6 sin θ6|x7⟩

j0∧
x6

R(θ6)

j0∧
x6

K (−ϕ6)|v5⟩ = o|x5⟩+ c6|x6⟩
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= o|x5⟩+ c6 cos θ6|x6⟩+ c6 sin θ6|x7⟩

j0∧
x6

R(θ6)

j0∧
x6

K (−ϕ6)|v5⟩

= o|x5⟩+ c6|x6⟩
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Universally approximating set of gates

The problem we encountered in trying to make a general unitary operator out of simple gates
cannot be solved exactly, however the Solovay-Kitaev theorem states that there are finite sets
of gates that can approximate any unitary transformation to arbitrary accuracy efficiently

If we desire accuracy to a level of 2−d , there exists a polynomial p(d) such that any
single-qubit unitary transformation can be approximated to the desired accuracy by a sequence
of no more than p(d) gates

We want to find a finite set of gates that can approximate all single-qubit transformations so
that with the addition of the Cnot , we can prepare any unitary operator

Take the Hadamard and the Cnot gates and add two phase gates Pπ
2
and Pπ

4

Pπ
2
=

(
1 0

0 e i
π
2

)
= |0⟩⟨0|+ i |1⟩⟨1|, Pπ

4
=

(
1 0

0 e i
π
4

)
= |0⟩⟨0|+ e i

π
4 |1⟩⟨1| = e i

π
8 T (−π

8
)
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Making approximating set of gates

An arbitrary transformation can be viewed as a rotation of the qubit on the Bloch sphere by
any amount

In order to make an approximating set to an arbitrary precision, we need to be able to combine
the 4 gates to get as close as desired to any rotation, even irrational ones

Why do we only use rational rotations, those where for some integer m, Rm = I?

When working on the Bloch sphere, rational rotations around single axes are able to construct
irrational rotations in three dimensions

Pπ
4
is a rotation of π

4 about the z-axis of the Bloch sphere

S = HPπ
4
H is a rotation of π

4 about the x-axis

It can be shown that simply combining these two rational rotations V = Pπ
4
S gives an

irrational rotation
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Making approximating set of gates (cont.)

Since V is irrational, any rotation can be approximated by a suitable power of V to within
arbitrary precision

By transforming V as HVH we create an irrational rotation about an orthogonal axis and with
these two, any operation can be constructed, recall that another way of generating an arbitrary
transformation was

W = K (δ)T (α)R(β)T (γ)

T (α) rotates about the z-axis and R(β) rotates about the y -axis

So we have that these 4 gates constitute a universally approximating set of gates

This is one possible set, others also exist
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