
Today’s outline - February 01, 2022

• Dense Coding

• Quantum teleportation

• Phase shift and rotation operators

• Operator decomposition

Reading Assignment: Chapter 5.5-5.6

Homework Assignment #03:
Chapter 4:1,2,7,10,15,18
due Thursday, February 03, 2022

Homework Assignment #04:
Chapter 5:4,6,9,15,16,17
due Tuesday, February 15, 2022
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Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is
used to transmit two classical bits

Make an entangled pair of qubits |ψ0⟩ = 1√
2
(|00⟩+ |11⟩) then send the first to Alice and the

second to Bob

Alice wishes to transmit the state of two
classical bits (values 0, 1, 2, 3) and ap-
plies one of four Pauli transformations to her
qubit according to the table

0 −→ |ψ0⟩ = (I ⊗ I )|ψ0⟩
1 −→ |ψ1⟩ = (X ⊗ I )|ψ0⟩
2 −→ |ψ2⟩ = (Z ⊗ I )|ψ0⟩
3 −→ |ψ3⟩ = (Y ⊗ I )|ψ0⟩

I ⊗ I |ψ0⟩ = (|0⟩⟨0|+ |1⟩⟨1|)⊗ I 1√
2
(|00⟩+ |11⟩) = 1√

2
(|00⟩+ |11⟩)

X ⊗ I |ψ1⟩ = (|1⟩⟨0|+ |0⟩⟨1|)⊗ I 1√
2
(|00⟩+ |11⟩) = 1√

2
(|10⟩+ |01⟩)

Z ⊗ I |ψ2⟩ = (|0⟩⟨0| − |1⟩⟨1|)⊗ I 1√
2
(|00⟩+ |11⟩) = 1√

2
(|00⟩ − |11⟩)

Y ⊗ I |ψ3⟩ = (|0⟩⟨1| − |1⟩⟨0|)⊗ I 1√
2
(|00⟩+ |11⟩) = 1√

2
(−|10⟩+ |01⟩)

Alice then sends the transformed qubit to Bob who now has both qubits together
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
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2
(|10⟩+ |01⟩)
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2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)
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
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
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2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→


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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them

followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)



=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=



|ψ0⟩

|ψ1⟩

|ψ2⟩
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and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them

followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=



|ψ0⟩
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and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them

followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=



|ψ0⟩

|ψ1⟩

|ψ2⟩

|ψ3⟩

and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them

followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=



|ψ0⟩

|ψ1⟩

|ψ2⟩
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and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them

followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=



|ψ0⟩

|ψ1⟩
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and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them

followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=


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and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩



H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩

|1⟩|0⟩

|1⟩|1⟩


=


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and Bob recovers the two qubits that Alice started with
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
(|11⟩+ |01⟩)

1√
2
(|00⟩ − |10⟩)

1√
2
(|01⟩ − |11⟩)


=



1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩

=

1√
2
(|0⟩+ |1⟩)|0⟩

1√
2
(|1⟩+ |0⟩)|1⟩

1√
2
(|0⟩ − |1⟩)|0⟩

1√
2
(|0⟩ − |1⟩)|1⟩


H⊗I−−−→



|0⟩|0⟩

|0⟩|1⟩
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
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Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled
pair to separate them followed by a Hadamard transformation to Alice’s qubit

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ1⟩ = 1√
2
(|10⟩+ |01⟩)

|ψ2⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ3⟩ = 1√
2
(|01⟩ − |10⟩)


Cnot−−→



1√
2
(|00⟩+ |10⟩)

1√
2
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Quantum teleportation

Another common application is quantum
teleportation, where Alice wants to trans-
mit an unknown qubit, |ϕ⟩ = a|0⟩+b|1⟩, to
Bob by means of two classical bits

Start with an EPR pair of qubits and send
one to Alice and the other to Bob

|ψ0⟩ = 1√
2
(|00⟩+ |11⟩)

BA

EPR

source

|φ |φclassical channel

Alice also has |ϕ⟩, making a three qubit system with Bob controlling the last one and Alice
controlling the first two: |ϕ⟩|ψ0⟩ = 1√

2
(a|000⟩+ a|011⟩+ b|100⟩+ b|111⟩)

Alice applies Cnot and then H ⊗ I to the two bits she controls

(H ⊗ I ⊗ I )(Cnot ⊗ I ) 1√
2
(a|000⟩+ a|011⟩+ b|100⟩+ b|111⟩)

= (H ⊗ I ⊗ I ) 1√
2
(

a|000⟩+ a|011⟩+ b|110⟩+ b|101⟩

)

= 1
2 [a(|000⟩

+ |011⟩

+ |100⟩

+ |111⟩

)

+ b(|010⟩

+ |001⟩

− |110⟩

− |101⟩

]
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Alice now measures her two qubits and gets one of four states |00⟩, |01⟩, |10⟩, |11⟩ with equal
probability and sends the 2 classical bit result to Bob

depending on Alice’s result, Bob’s qubit is projected into one of four states

a|0⟩+ b|1⟩, a|1⟩+ b|0⟩, a|0⟩ − b|1⟩, a|1⟩ − b|0⟩
Bob can now reconstruct the original state of the unknown |ϕ⟩ by applying the Pauli gate
corresponding to the classical bits he receives from Alice

00 −→ I (a|0⟩+ b|1⟩) = a|0⟩+ b|1⟩ = |ϕ⟩

01 −→ X (a|1⟩+ b|0⟩) = a|0⟩+ b|1⟩ = |ϕ⟩

10 −→ Z (a|0⟩ − b|1⟩) = a|0⟩+ b|1⟩ = |ϕ⟩

11 −→ Y (a|1⟩ − b|0⟩) = a|0⟩+ b|1⟩ = |ϕ⟩
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a|0⟩+ b|1⟩, a|1⟩+ b|0⟩, a|0⟩ − b|1⟩, a|1⟩ − b|0⟩
Bob can now reconstruct the original state of the unknown |ϕ⟩ by applying the Pauli gate
corresponding to the classical bits he receives from Alice

00 −→ I (a|0⟩+ b|1⟩) = a|0⟩+ b|1⟩ = |ϕ⟩

01 −→ X (a|1⟩+ b|0⟩) = a|0⟩+ b|1⟩ = |ϕ⟩

10 −→ Z (a|0⟩ − b|1⟩) = a|0⟩+ b|1⟩ = |ϕ⟩

11 −→ Y (a|1⟩ − b|0⟩) = a|0⟩+ b|1⟩ = |ϕ⟩
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Quantum teleportation—the transmission and reconstruction over arbitrary distances of the state of a quantum
system—isdemonstratedexperimentally.During teleportation,an initial photonwhichcarriesthepolarization that is to
be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of
the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the
initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

The dream of teleportation is to be able to travel by simply
reappearing at some distant location. An object to be teleported
can be fully characterized by its properties, which in classical physics
can be determined by measurement. To make a copy of that object at
a distant location one does not need the original parts and pieces—
all that is needed is to send the scanned information so that it can be
used for reconstructing the object. But how precisely can this be a
true copy of the original? What if these parts and pieces are
electrons, atoms and molecules? What happens to their individual
quantum properties, which according to the Heisenberg’s uncer-
tainty principle cannot be measured with arbitrary precision?

Bennett et al.1 have suggested that it is possible to transfer the
quantum state of a particle onto another particle—the process of
quantum teleportation—provided one does not get any informa-
tion about the state in the course of this transformation. This
requirement can be fulfilled by using entanglement, the essential
feature of quantum mechanics2. It describes correlations between
quantum systems much stronger than any classical correlation
could be.

The possibility of transferring quantum information is one of the
cornerstones of the emerging field of quantum communication and
quantum computation3. Although there is fast progress in the
theoretical description of quantum information processing, the
difficulties in handling quantum systems have not allowed an
equal advance in the experimental realization of the new proposals.
Besides the promising developments of quantum cryptography4

(the first provably secure way to send secret messages), we have
only recently succeeded in demonstrating the possibility of quan-
tum dense coding5, a way to quantum mechanically enhance data
compression. The main reason for this slow experimental progress
is that, although there exist methods to produce pairs of entangled
photons6, entanglement has been demonstrated for atoms only very
recently7 and it has not been possible thus far to produce entangled
states of more than two quanta.

Here we report the first experimental verification of quantum
teleportation. By producing pairs of entangled photons by the
process of parametric down-conversion and using two-photon
interferometry for analysing entanglement, we could transfer a
quantum property (in our case the polarization state) from one
photon to another. The methods developed for this experiment will
be of great importance both for exploring the field of quantum
communication and for future experiments on the foundations of
quantum mechanics.

The problem
To make the problem of transferring quantum information clearer,
suppose that Alice has some particle in a certain quantum state |w〉

and she wants Bob, at a distant location, to have a particle in that
state. There is certainly the possibility of sending Bob the particle
directly. But suppose that the communication channel between
Alice and Bob is not good enough to preserve the necessary
quantum coherence or suppose that this would take too much
time, which could easily be the case if | w〉 is the state of a more
complicated or massive object. Then, what strategy can Alice and
Bob pursue?

As mentioned above, no measurement that Alice can perform
on |w〉 will be sufficient for Bob to reconstruct the state because the
state of a quantum system cannot be fully determined by measure-
ments. Quantum systems are so evasive because they can be in a
superposition of several states at the same time. A measurement on
the quantum system will force it into only one of these states—this
is often referred to as the projection postulate. We can illustrate this
important quantum feature by taking a single photon, which can be
horizontally or vertically polarized, indicated by the states |↔〉 and |l 〉.
It can even be polarized in the general superposition of these two
states

jw〉 ¼ aj↔〉 þ bj l 〉 ð1Þ

where a and b are two complex numbers satisfying jaj2 þ jbj2 ¼ 1.
To place this example in a more general setting we can replace the
states |↔〉 and |l 〉 in equation (1) by |0〉 and |1〉, which refer to the
states of any two-state quantum system. Superpositions of | 0〉 and
| 1〉 are called qubits to signify the new possibilities introduced by
quantum physics into information science8.

If a photon in state | w〉 passes through a polarizing beamsplit-
ter—a device that reflects (transmits) horizontally (vertically)
polarized photons—it will be found in the reflected (transmitted)
beam with probability |a | 2 (| b | 2). Then the general state | w〉 has
been projected either onto | ↔〉 or onto | l 〉 by the action of the
measurement. We conclude that the rules of quantum mechanics, in
particular the projection postulate, make it impossible for Alice to
perform a measurement on |w〉 by which she would obtain all the
information necessary to reconstruct the state.

The concept of quantum teleportation
Although the projection postulate in quantum mechanics seems to
bring Alice’s attempts to provide Bob with the state |w〉 to a halt, it
was realised by Bennett et al.1 that precisely this projection postulate
enables teleportation of |w〉 from Alice to Bob. During teleportation
Alice will destroy the quantum state at hand while Bob receives the
quantum state, with neither Alice nor Bob obtaining information
about the state |w〉. A key role in the teleportation scheme is played
by an entangled ancillary pair of particles which will be initially
shared by Alice and Bob.
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Suppose particle 1 which Alice wants to teleport is in the initial
state jw〉1 ¼ aj ↔ 〉1 þ bj l 〉1 (Fig. 1a), and the entangled pair of
particles 2 and 3 shared by Alice and Bob is in the state:

jw2 〉23 ¼
1
���

2
p j↔〉2j l 〉3 2 j l 〉2j↔〉3

ÿ �

ð2Þ

That entangled pair is a single quantum system in an equal
superposition of the states | ↔〉2 | l 〉3 and | l 〉2 | ↔〉3. The entangled
state contains no information on the individual particles; it only
indicates that the two particles will be in opposite states. The
important property of an entangled pair is that as soon as a
measurement on one of the particles projects it, say, onto |↔〉 the
state of the other one is determined to be | l 〉, and vice versa. How
could a measurement on one of the particles instantaneously
influence the state of the other particle, which can be arbitrarily

far away? Einstein, among many other distinguished physicists,
could simply not accept this ‘‘spooky action at a distance’’. But this
property of entangled states has now been demonstrated by numer-
ous experiments (for reviews, see refs 9, 10).

The teleportation scheme works as follows. Alice has the particle 1
in the initial state | w〉1 and particle 2. Particle 2 is entangled with
particle 3 in the hands of Bob. The essential point is to perform a
specific measurement on particles 1 and 2 which projects them onto
the entangled state:

jw2 〉12 ¼
1
���

2
p j↔〉1j l 〉2 2 j l 〉1j↔〉2

ÿ �

ð3Þ

This is only one of four possible maximally entangled states into
which any state of two particles can be decomposed. The projection
of an arbitrary state of two particles onto the basis of the four states
is called a Bell-state measurement. The state given in equation (3)
distinguishes itself from the three other maximally entangled states
by the fact that it changes sign upon interchanging particle 1 and
particle 2. This unique antisymmetric feature of |w−〉12 will play an
important role in the experimental identification, that is, in mea-
surements of this state.

Quantum physics predicts1 that once particles 1 and 2 are
projected into | w−〉12, particle 3 is instantaneously projected into
the initial state of particle 1. The reason for this is as follows. Because
we observe particles 1 and 2 in the state |w−〉12 we know that whatever
the state of particle 1 is, particle 2 must be in the opposite state, that
is, in the state orthogonal to the state of particle 1. But we had
initially prepared particle 2 and 3 in the state |w−〉23, which means
that particle 2 is also orthogonal to particle 3. This is only possible if
particle 3 is in the same state as particle 1 was initially. The final state
of particle 3 is therefore:

jw〉3 ¼ aj↔〉3 þ bj l 〉3 ð4Þ

We note that during the Bell-state measurement particle 1 loses its
identity because it becomes entangled with particle 2. Therefore the
state |w〉1 is destroyed on Alice’s side during teleportation.

This result (equation (4)) deserves some further comments. The
transfer of quantum information from particle 1 to particle 3 can
happen over arbitrary distances, hence the name teleportation.
Experimentally, quantum entanglement has been shown11 to survive
over distances of the order of 10 km. We note that in the teleporta-
tion scheme it is not necessary for Alice to know where Bob is.
Furthermore, the initial state of particle 1 can be completely
unknown not only to Alice but to anyone. It could even be quantum
mechanically completely undefined at the time the Bell-state mea-
surement takes place. This is the case when, as already remarked by
Bennett et al.1, particle 1 itself is a member of an entangled pair and
therefore has no well-defined properties on its own. This ultimately
leads to entanglement swapping12,13.

It is also important to notice that the Bell-state measurement does
not reveal any information on the properties of any of the particles.
This is the very reason why quantum teleportation using coherent
two-particle superpositions works, while any measurement on one-
particle superpositions would fail. The fact that no information
whatsoever is gained on either particle is also the reason why
quantum teleportation escapes the verdict of the no-cloning
theorem14. After successful teleportation particle 1 is not available
in its original state any more, and therefore particle 3 is not a clone
but is really the result of teleportation.

A complete Bell-state measurement can not only give the result
that the two particles 1 and 2 are in the antisymmetric state, but with
equal probabilities of 25% we could find them in any one of the
three other entangled states. When this happens, particle 3 is left in
one of three different states. It can then be brought by Bob into the
original state of particle 1 by an accordingly chosen transformation,
independent of the state of particle 1, after receiving via a classical
communication channel the information on which of the Bell-state

Figure 1 Scheme showing principles involved in quantum teleportation (a) and

the experimental set-up (b). a, Alice has a quantum system, particle 1, in an initial

state which she wants to teleport to Bob. Alice and Bob also share an ancillary

entangled pair of particles 2 and 3 emitted by an Einstein–Podolsky–Rosen (EPR)

source. Alice then performs a joint Bell-state measurement (BSM) on the initial

particle and one of the ancillaries, projecting them also onto an entangled state.

After she has sent the result of her measurement as classical information to Bob,

he canperform aunitary transformation (U) on the otherancillaryparticle resulting

in it being in the state of the original particle. b, A pulse of ultraviolet radiation

passing through a nonlinear crystal creates the ancillary pair of photons 2 and 3.

After retroflection during its second passage through the crystal the ultraviolet

pulse creates another pair of photons, one of which will be prepared in the initial

state of photon 1 to be teleported, the otherone servingas a trigger indicating that

a photon to be teleported is under way. Alice then looks for coincidences after a

beam splitter BS where the initial photon and one of the ancillaries are

superposed. Bob, after receiving the classical information that Alice obtained a

coincidence count in detectors f1 and f2 identifying the |w−〉12 Bell state, knows that

his photon 3 is in the initial state of photon 1 which he then can check using

polarization analysis with the polarizing beam splitter PBS and the detectors d1

and d2. The detector p provides the information that photon 1 is under way.

“Experimental quantum teleportation,” D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zellinger, Nature 390, 575 (1997).
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Quantum teleportation experiment

Experimental single photon teleportation using 3 and 4 coincidence measurements

Parametric down-conversion produces an
EPR pair 2 & 3 in state
|Ψ−⟩23 = 1√

2
(|→⟩| →⟩ − | →⟩|→⟩)

The reflected beam produces photons 1 & 4

1 & 2 are mixed in a beam splitter and a
coincidence is detected by detectors f1 and f2
if Bell state |Ψ−⟩12 = 1√

2
(|→⟩| →⟩−| →⟩|→⟩)

is present

Bob measures photon 3 with a polarizing
beam splitter and two detectors d1 and d2
when he knows that Alice has the Bell state
|Ψ−⟩12
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Quantum teleportation experiment

Initial experiment with photon 1 polarized at 45◦

Coincidence between f1 and f2 will occur 25% of the time

Bob’s polarizer is also set to 45◦ and detector d2 should
give a coincident pulse with f1 and f2 to demonstrate
teleportation

A variable delay is applied to photon 2 to obtain the
temporal overlap needed for the Bell-state measurement

Coincidence between d1, f1, and f2 should drop to zero
when teleportation occurs
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Quantum teleportation: three photon coincidence
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Quantum teleportation experiment

These results are confirmed by measuring a number of different polarizations

Polarization Visibility

+45◦ 0.63± 0.02
−45◦ 0.64± 0.02
0◦ 0.66± 0.02
90◦ 0.61± 0.02
Circular 0.57± 0.02

Visibility is a measure of the dip

The background in the three-photon coincidence can be eliminated at the cost of forcing
photon 1 into a single particle state by measuring the coincidence with photon 4 in detector p
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Quantum teleportation: four photon coincidence
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Quantum teleportation over long distance

“Quantum teleportation across the Danube,” R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Linden-
thal, P. Walther, and A. Zeilinger, Nature 430, 849 (2004).
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Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K (δ),

rotations R(β), and phase rotations T (α)

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
with the properties that

K (δ1 + δ2) = K (δ1)K (δ2) R(β1 + β2) = R(β1)R(β2) T (α1 + α2) = T (α1)T (α2)

furthermore, the phase shift operator K (δ) commutes with both R(β) and T (α)

[K (δ),R(β)] = K (δ)R(β)− R(β)K (δ) = 0 [K (δ),T (α)] = K (δ)T (α)− T (α)K (δ) = 0

K applies a global phase shift and can be written just as the phase factor alone, e iδ, while
R(α) and T (α) rotate the qubit by 2α about the y - and z- axes respectively
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Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K (δ)T (α)R(β)T (γ)

The general form of the transformation
Q is given by

Because the transformation must be uni-
tary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

Q =

(
u00 u01
u10 u11

)

QQ† = I =

(
u00 u01
u10 u11

)(
u00 u10
u01 u11

)
=

(
|u00|2 + |u01|2 u00u10 + u01u11
u10u00 + u11u01 |u10|2 + |u11|2

)
Rearrange the off-diagonal terms and multiply them together

u00u10 = −u11u01, u00u10 = −u11u01 −→ |u00|2|u10|2 = |u11|2|u01|2

Solve for |u01|2 and |u10|2 and use these in combination with the two equations from the
diagonal terms

|u00|2 + |u01|2 = 1, |u10|2 + |u11|2 = 1
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Operator decomposition (cont.)

|u01|2 = |u10|2
|u00|2

|u11|2

1 = |u00|2 + |u01|2

|u10|2 = |u01|2
|u11|2

|u00|2

1 = |u10|2 + |u11|2

|u00|2 + |u10|2
|u00|2

|u11|2
= 1 −→ |u00|2|u11|2 + |u10|2|u00|2 = |u11|2 = |u00|2

(
|u11|2 + |u10|2

)
Thus we find that |u00|2 = |u11|2 and by consequence |u01|2 = |u10|2 and

|u00|2 + |u01|2 = 1 −→ |u00| = cosβ, |u01| = sinβ
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Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of K (δ)T (α)R(β)T (γ) we
write the matrix as

Q =

(
e iθ00 cosβ e iθ01 sinβ

−e iθ10 sinβ e iθ11 cosβ

)

= K (δ)T (α)R(β)T (γ) =

(
e i(δ+α+γ) cosβ e i(δ+α−γ) sinβ

−e i(δ−α+γ) sinβ e i(δ−α−γ) cosβ

)
This selection can be shown to satisfy θ10 − θ00 = θ11 − θ01

θ00 = δ + α+ γ

θ01 = δ + α− γ

θ10 = δ − α+ γ

θ11 = θ10 − θ00 + θ01

= δ − α+ γ − δ − α− γ + δ + α− γ

= δ − α− γ

This is another form for the general unitary transformation which forms the building blocks,
along with the Cnot operator for all arbitrary n-qubit operators
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Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧
Q =

∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)

R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧
Q =

∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)

T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧
Q =

∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)

Because the K (δ) operator is a global phase shift it is possible to write that∧
Q =

∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using

∧
Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I

δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations

We wish to implement a controlled operator
∧
Q where Q = K (δ)T (α)R(β)T (δ) and

K (δ) =

(
e iδ 0
0 e iδ

)
R(β) =

(
cosβ sinβ

− sinβ cosβ

)
T (α) =

(
e+iα 0
0 e−iα

)
Because the K (δ) operator is a global phase shift it is possible to write that∧

Q =
∧
K (δ)

∧
(T (α)R(β)T (γ)) = (

∧
K (δ))(

∧
Q ′)

The conditional phase shift,
∧
Kδ can be implemented using∧

Kδ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ K (δ)

= |0⟩⟨0| ⊗ I + e iδ|1⟩⟨1| ⊗ I

=
(
K ( δ2)T (− δ

2)
)
⊗ I δK(  )

K (  )δ

2 T(   )δ

2

=

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 / 19



Singly controlled transformations (cont.)

Implementing
∧
Q ′ requires defining three additional transformations

Q0 = T (α)R(β2 ) =

(
e+iα 0
0 e−iα

)(
cos β

2 sin β
2

− sin β
2 cos β

2

)

Q1 = R(−β
2 )T (−γ+α

2 ) =

(
cos −β

2 sin −β
2

− sin −β
2 cos −β

2

)(
e−i( γ+α

2
) 0

0 e+i( γ+α
2

)

)

Q2 = T (γ−α
2 ) =

(
e+i( γ−α

2
) 0

0 e−i( γ−α
2

)

)

The assertion is that
∧
Q ′ = (I ⊗

Q0)Cnot(I⊗Q1)Cnot(I⊗Q2), or in graphical
terms Q1 Q0Q2
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Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩

|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 )

= T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 )

= T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α)

= I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19



Singly controlled transformations (cont.)

Q0 = T (α)R(β2 ), Q1 = R(−β
2 )T (−γ+α

2 ), Q2 = T (γ−α
2 )

Q1 Q0Q2

This circuit does the following

|0⟩ ⊗ |x⟩ −→ |0⟩ ⊗ Q0Q1Q2|x⟩
|1⟩ ⊗ |x⟩ −→ |1⟩ ⊗ Q0XQ1XQ2|x⟩

Q0Q1Q2 = T (α)R(β2 )R(−
β
2 )T (−γ+α

2 )T (γ−α
2 )

= T (α)T (−γ+α
2 )T (γ−α

2 ) = T (α)T (−α) = I

but R(β)R(−β) ≡ I

and T (α)T (γ) = T (α+ γ)

Q0XQ1XQ2 = T (α)R(β2 )XR(−
β
2 )T (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )XR(−
β
2 )XXT (−γ+α

2 )XT (γ−α
2 )

= T (α)R(β2 )R(
β
2 )T (γ+α

2 )T (γ−α
2 )

= T (α)R(β)T (γ) = Q ′

but XR(β)X = R(−β)

and XT (α)X = T (−α)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19 / 19


	Preamble
	Today's outline - February 01, 2022

	Quantum Gates
	Dense coding
	Dense coding (cont.)
	Quantum teleportation
	Quantum teleportation
	Quantum teleportation experiment
	Quantum teleportation experiment
	Quantum teleportation experiment
	Quantum teleportation: three photon coincidence
	Quantum teleportation experiment
	Quantum teleportation: four photon coincidence
	Quantum teleportation over long distance

	Quantum Circuits
	Phase shift and rotation operators
	Operator decomposition
	Operator decomposition (cont.)
	Operator decomposition (cont.)
	Singly controlled transformations
	Singly controlled transformations (cont.)
	Singly controlled transformations (cont.)


