

Today's outline - February 01, 2022

Today's outline - February 01, 2022

- Dense Coding

Today's outline - February 01, 2022

- Dense Coding
- Quantum teleportation

Today's outline - February 01, 2022

- Dense Coding
- Quantum teleportation
- Phase shift and rotation operators

Today's outline - February 01, 2022

- Dense Coding
- Quantum teleportation
- Phase shift and rotation operators
- Operator decomposition

Today's outline - February 01, 2022

- Dense Coding
- Quantum teleportation
- Phase shift and rotation operators
- Operator decomposition

Reading Assignment: Chapter 5.5-5.6

Today's outline - February 01, 2022

- Dense Coding
- Quantum teleportation
- Phase shift and rotation operators
- Operator decomposition

Reading Assignment: Chapter 5.5-5.6

Homework Assignment #03:

Chapter 4:1,2,7,10,15,18

due Thursday, February 03, 2022

Today's outline - February 01, 2022

- Dense Coding
- Quantum teleportation
- Phase shift and rotation operators
- Operator decomposition

Reading Assignment: Chapter 5.5-5.6

Homework Assignment #03:
Chapter 4:1,2,7,10,15,18
due Thursday, February 03, 2022

Homework Assignment #04:
Chapter 5:4,6,9,15,16,17
due Tuesday, February 15, 2022

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\textcolor{red}{I} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\textcolor{red}{X} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\mathcal{Y} \otimes \mathcal{I})|\psi_0\rangle$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$\begin{aligned} 0 &\longrightarrow |\psi_0\rangle = (\textcolor{red}{I} \otimes \textcolor{blue}{I})|\psi_0\rangle \\ 1 &\longrightarrow |\psi_1\rangle = (\textcolor{red}{X} \otimes \textcolor{blue}{I})|\psi_0\rangle \\ 2 &\longrightarrow |\psi_2\rangle = (\textcolor{red}{Z} \otimes \textcolor{blue}{I})|\psi_0\rangle \\ 3 &\longrightarrow |\psi_3\rangle = (\textcolor{red}{Y} \otimes \textcolor{blue}{I})|\psi_0\rangle \end{aligned}$$

$$\textcolor{red}{I} \otimes \textcolor{blue}{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\textcolor{red}{I} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\textcolor{red}{X} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\textcolor{red}{Z} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\textcolor{red}{Y} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$\textcolor{red}{I} \otimes \textcolor{blue}{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\mathcal{Y} \otimes \mathcal{I})|\psi_0\rangle$$

$$\mathcal{I} \otimes \mathcal{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\mathcal{X} \otimes \mathcal{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\mathcal{Y} \otimes \mathcal{I})|\psi_0\rangle$$

$$\mathcal{I} \otimes \mathcal{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\mathcal{X} \otimes \mathcal{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\textcolor{red}{I} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\textcolor{red}{X} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\textcolor{red}{Z} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\textcolor{red}{Y} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$\textcolor{red}{I} \otimes \textcolor{blue}{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\textcolor{red}{X} \otimes \textcolor{blue}{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

$$\textcolor{red}{Z} \otimes \textcolor{blue}{I}|\psi_2\rangle = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\textcolor{red}{I} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\textcolor{red}{X} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\textcolor{red}{Z} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\textcolor{red}{Y} \otimes \textcolor{blue}{I})|\psi_0\rangle$$

$$\textcolor{red}{I} \otimes \textcolor{blue}{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\textcolor{red}{X} \otimes \textcolor{blue}{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

$$\textcolor{red}{Z} \otimes \textcolor{blue}{I}|\psi_2\rangle = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes \textcolor{blue}{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\mathcal{Y} \otimes \mathcal{I})|\psi_0\rangle$$

$$\mathcal{I} \otimes \mathcal{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\mathcal{X} \otimes \mathcal{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

$$\mathcal{Z} \otimes \mathcal{I}|\psi_2\rangle = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$\mathcal{Y} \otimes \mathcal{I}|\psi_3\rangle = (|0\rangle\langle 1| - |1\rangle\langle 0|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\mathcal{Y} \otimes \mathcal{I})|\psi_0\rangle$$

$$\mathcal{I} \otimes \mathcal{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\mathcal{X} \otimes \mathcal{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

$$\mathcal{Z} \otimes \mathcal{I}|\psi_2\rangle = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$\mathcal{Y} \otimes \mathcal{I}|\psi_3\rangle = (|0\rangle\langle 1| - |1\rangle\langle 0|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(-|10\rangle + |01\rangle)$$

Dense coding

One application of simple gates is dense coding, where a single qubit and a shared EPR pair is used to transmit two classical bits

Make an entangled pair of qubits $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ then send the first to **Alice** and the second to **Bob**

Alice wishes to transmit the state of two classical bits (values 0, 1, 2, 3) and applies one of four Pauli transformations to her qubit according to the table

$$0 \longrightarrow |\psi_0\rangle = (\mathcal{I} \otimes \mathcal{I})|\psi_0\rangle$$

$$1 \longrightarrow |\psi_1\rangle = (\mathcal{X} \otimes \mathcal{I})|\psi_0\rangle$$

$$2 \longrightarrow |\psi_2\rangle = (\mathcal{Z} \otimes \mathcal{I})|\psi_0\rangle$$

$$3 \longrightarrow |\psi_3\rangle = (\mathcal{Y} \otimes \mathcal{I})|\psi_0\rangle$$

$$\mathcal{I} \otimes \mathcal{I}|\psi_0\rangle = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\mathcal{X} \otimes \mathcal{I}|\psi_1\rangle = (|1\rangle\langle 0| + |0\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

$$\mathcal{Z} \otimes \mathcal{I}|\psi_2\rangle = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$\mathcal{Y} \otimes \mathcal{I}|\psi_3\rangle = (|0\rangle\langle 1| - |1\rangle\langle 0|) \otimes \mathcal{I} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(-|10\rangle + |01\rangle)$$

Alice then sends the transformed qubit to **Bob** who now has both qubits together

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left\{ \right.$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left\{ \begin{array}{l} \\ \\ \\ \end{array} \right.$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \end{array} \right.$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \end{array} \right.$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} \quad \\ \quad \\ \quad \\ \quad \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} |0\rangle|0\rangle \\ \quad \quad \quad \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} |0\rangle|0\rangle \\ |0\rangle|1\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} |0\rangle|0\rangle \\ |0\rangle|1\rangle \\ |1\rangle|0\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} |0\rangle|0\rangle \\ |0\rangle|1\rangle \\ |1\rangle|0\rangle \\ |1\rangle|1\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} |0\rangle|0\rangle \\ |0\rangle|1\rangle \\ |1\rangle|0\rangle \\ |1\rangle|1\rangle \end{array} \right\} = \left. \begin{array}{l} |\psi_0\rangle \\ |\psi_1\rangle \\ |\psi_2\rangle \\ |\psi_3\rangle \end{array} \right\}$$

Dense coding (cont.)

Bob decodes the information by applying a controlled-NOT to the two qubits of the entangled pair to separate them followed by a Hadamard transformation to Alice's qubit

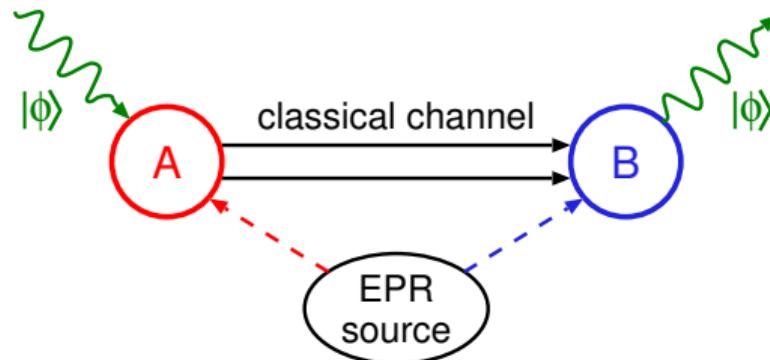
$$\left. \begin{array}{l} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\psi_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \xrightarrow{C_{not}} \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \\ \frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \end{array} \right\} = \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\}$$

$$= \left. \begin{array}{l} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle)|1\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|0\rangle \\ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1\rangle \end{array} \right\} \xrightarrow{H \otimes I} \left. \begin{array}{l} |0\rangle|0\rangle \\ |0\rangle|1\rangle \\ |1\rangle|0\rangle \\ |1\rangle|1\rangle \end{array} \right\} = \left. \begin{array}{l} |\psi_0\rangle \\ |\psi_1\rangle \\ |\psi_2\rangle \\ |\psi_3\rangle \end{array} \right\}$$

and Bob recovers the two qubits that Alice started with

Quantum teleportation

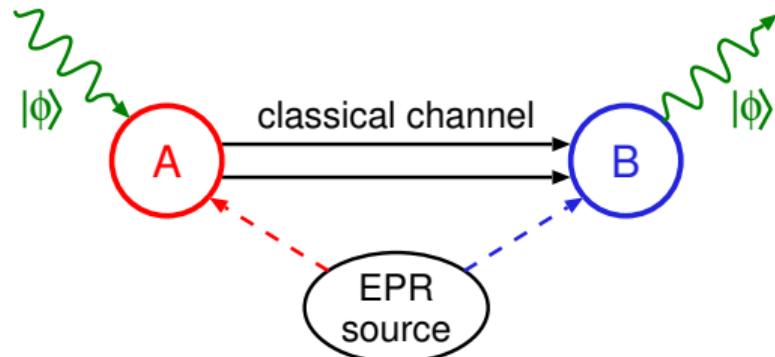
Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

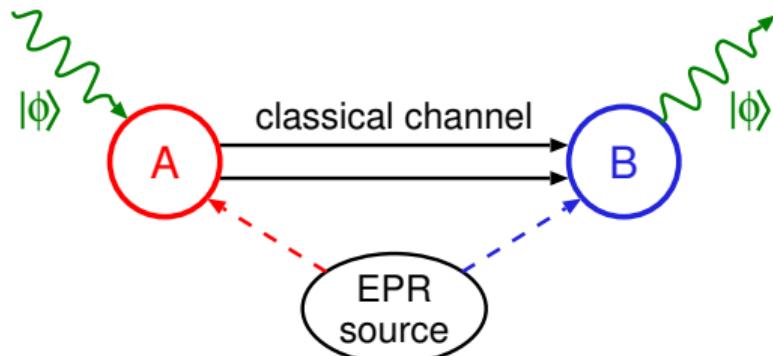


Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$



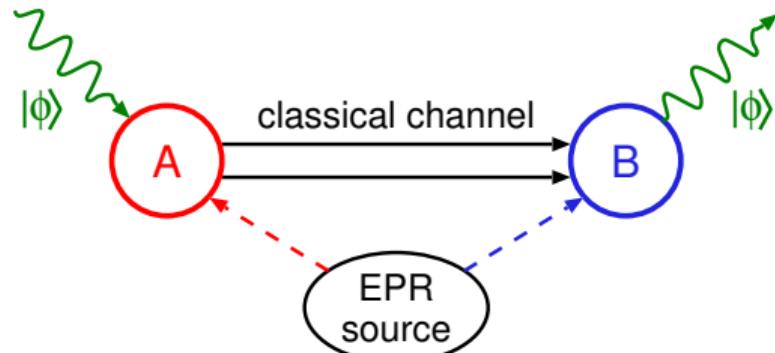
Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two:



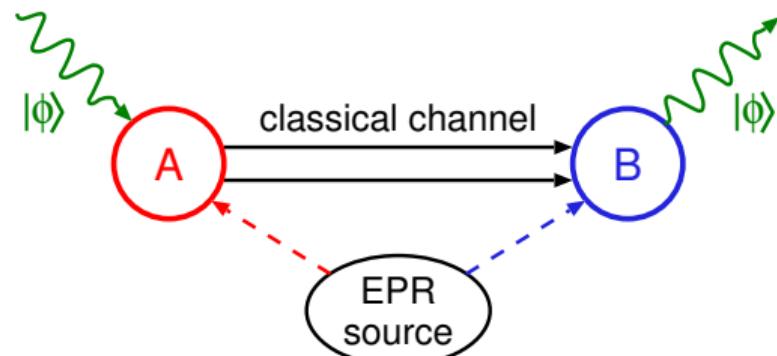
Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$



Quantum teleportation

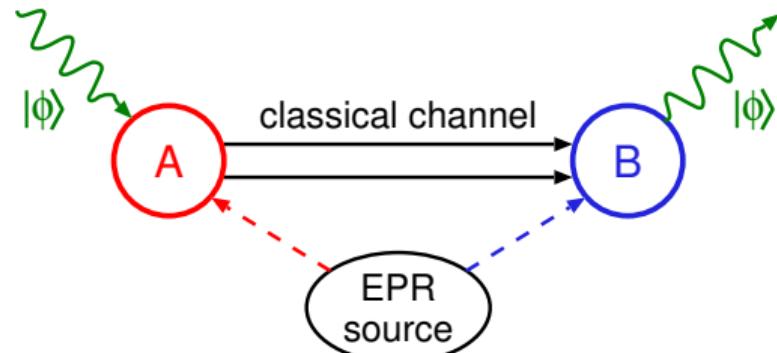
Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

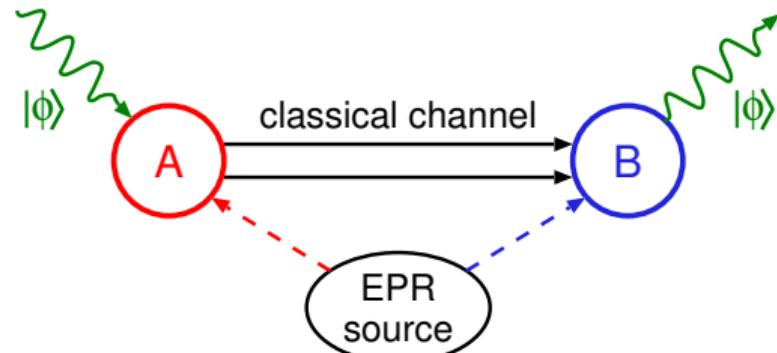
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$(H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

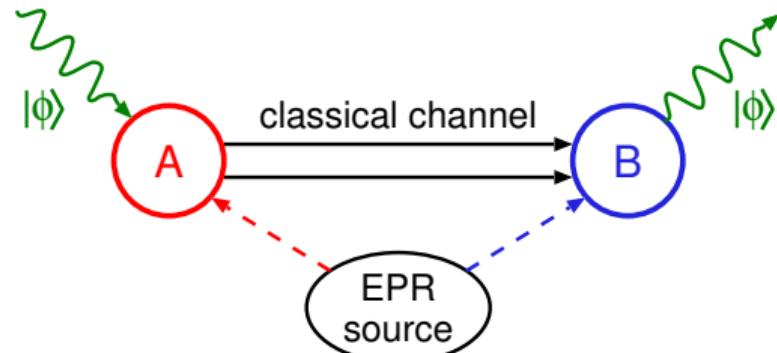
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}} \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

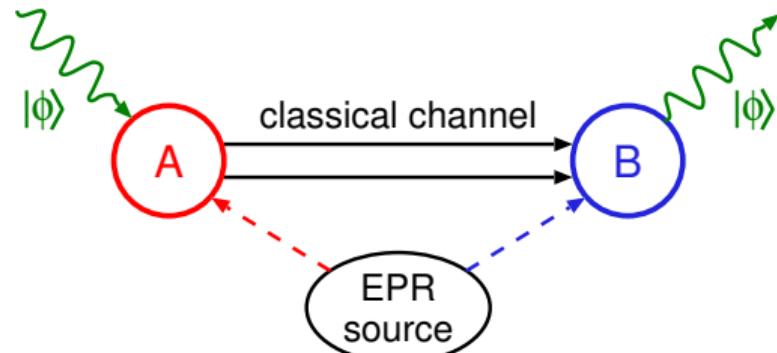
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle) \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

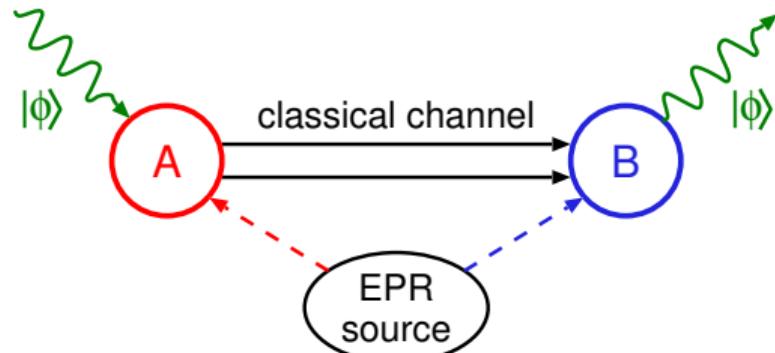
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle) \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

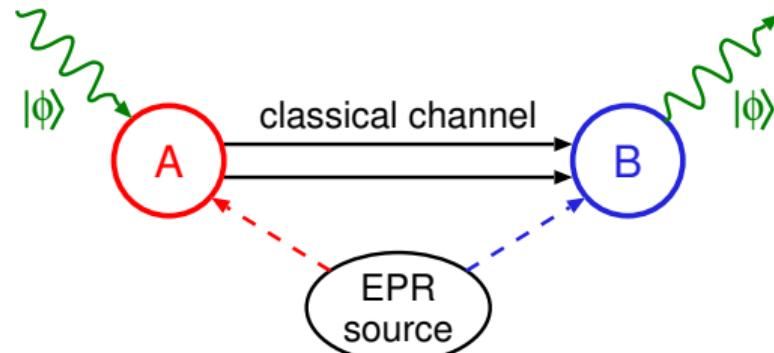
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|110\rangle \quad) \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

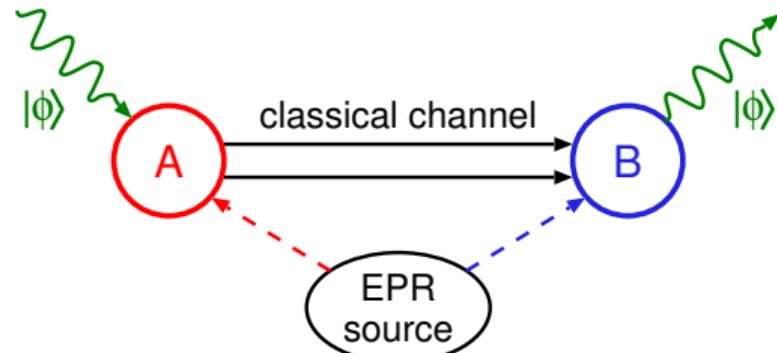
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|110\rangle + b|101\rangle) \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

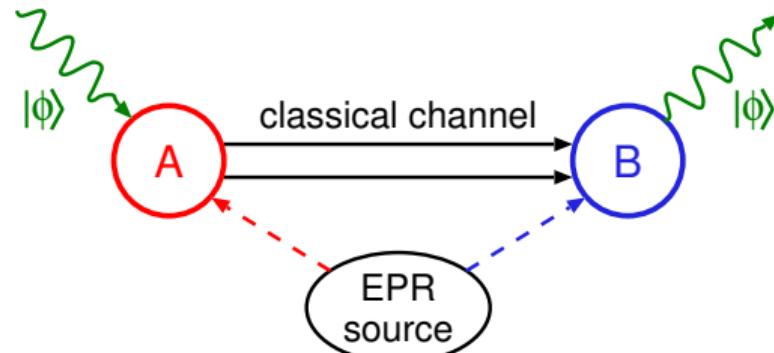
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|110\rangle + b|101\rangle) \\ &= \frac{1}{2} [a(|000\rangle + |100\rangle)] \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

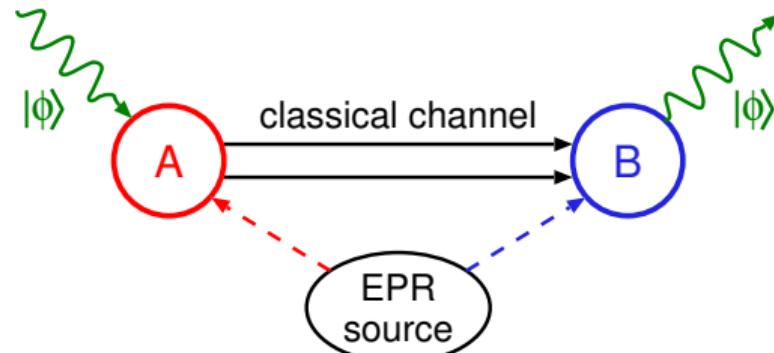
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|110\rangle + b|101\rangle) \\ &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle)] \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

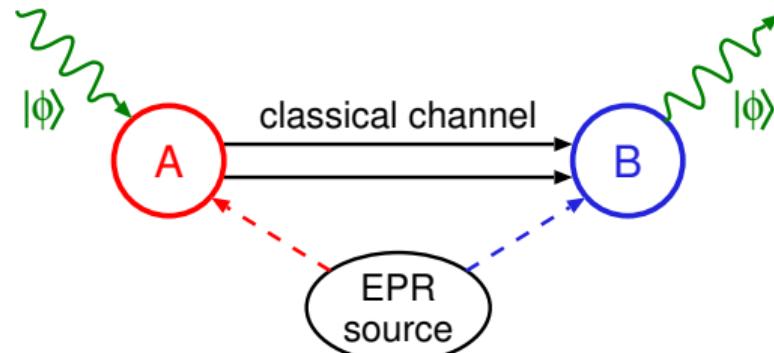
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|110\rangle + b|101\rangle) \\ &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle - |110\rangle)] \end{aligned}$$



Quantum teleportation

Another common application is quantum teleportation, where **Alice** wants to transmit an unknown qubit, $|\phi\rangle = a|0\rangle + b|1\rangle$, to **Bob** by means of two classical bits

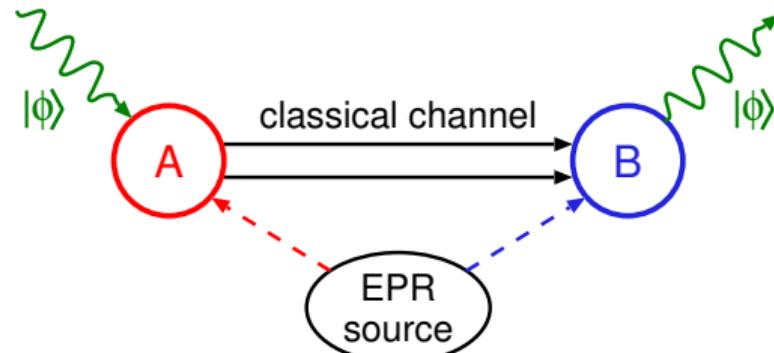
Start with an EPR pair of qubits and send one to **Alice** and the other to **Bob**

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice also has $|\phi\rangle$, making a three qubit system with **Bob** controlling the last one and **Alice** controlling the first two: $|\phi\rangle|\psi_0\rangle = \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)$

Alice applies C_{not} and then $H \otimes I$ to the two bits she controls

$$\begin{aligned} & (H \otimes I \otimes I)(C_{not} \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle) \\ &= (H \otimes I \otimes I) \frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|110\rangle + b|101\rangle) \\ &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \end{aligned}$$



Quantum teleportation

$$|\phi\rangle|\psi_0\rangle = \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)]$$

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

depending on Alice's result, Bob's qubit is projected into one of four states

$$a|0\rangle + b|1\rangle, \quad a|1\rangle + b|0\rangle, \quad a|0\rangle - b|1\rangle, \quad a|1\rangle - b|0\rangle$$

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

depending on Alice's result, Bob's qubit is projected into one of four states

$$a|0\rangle + b|1\rangle, \quad a|1\rangle + b|0\rangle, \quad a|0\rangle - b|1\rangle, \quad a|1\rangle - b|0\rangle$$

Bob can now reconstruct the original state of the unknown $|\phi\rangle$ by applying the Pauli gate corresponding to the classical bits he receives from Alice

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

depending on Alice's result, Bob's qubit is projected into one of four states

$$a|0\rangle + b|1\rangle, \quad a|1\rangle + b|0\rangle, \quad a|0\rangle - b|1\rangle, \quad a|1\rangle - b|0\rangle$$

Bob can now reconstruct the original state of the unknown $|\phi\rangle$ by applying the Pauli gate corresponding to the classical bits he receives from Alice

$$00 \longrightarrow I(a|0\rangle + b|1\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

depending on Alice's result, Bob's qubit is projected into one of four states

$$a|0\rangle + b|1\rangle, \quad a|1\rangle + b|0\rangle, \quad a|0\rangle - b|1\rangle, \quad a|1\rangle - b|0\rangle$$

Bob can now reconstruct the original state of the unknown $|\phi\rangle$ by applying the Pauli gate corresponding to the classical bits he receives from Alice

$$00 \longrightarrow I(a|0\rangle + b|1\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

$$01 \longrightarrow X(a|1\rangle + b|0\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

depending on Alice's result, Bob's qubit is projected into one of four states

$$a|0\rangle + b|1\rangle, \quad a|1\rangle + b|0\rangle, \quad a|0\rangle - b|1\rangle, \quad a|1\rangle - b|0\rangle$$

Bob can now reconstruct the original state of the unknown $|\phi\rangle$ by applying the Pauli gate corresponding to the classical bits he receives from Alice

$$00 \longrightarrow I(a|0\rangle + b|1\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

$$01 \longrightarrow X(a|1\rangle + b|0\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

$$10 \longrightarrow Z(a|0\rangle - b|1\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

Quantum teleportation

$$\begin{aligned} |\phi\rangle|\psi_0\rangle &= \frac{1}{2} [a(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + b(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(a|0\rangle + b|1\rangle) + |01\rangle(a|1\rangle + b|0\rangle) + |10\rangle(a|0\rangle - b|1\rangle) + |11\rangle(a|1\rangle - b|0\rangle)] \end{aligned}$$

Alice now measures her two qubits and gets one of four states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ with equal probability and sends the 2 classical bit result to Bob

depending on Alice's result, Bob's qubit is projected into one of four states

$$a|0\rangle + b|1\rangle, \quad a|1\rangle + b|0\rangle, \quad a|0\rangle - b|1\rangle, \quad a|1\rangle - b|0\rangle$$

Bob can now reconstruct the original state of the unknown $|\phi\rangle$ by applying the Pauli gate corresponding to the classical bits he receives from Alice

$$00 \longrightarrow I(a|0\rangle + b|1\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

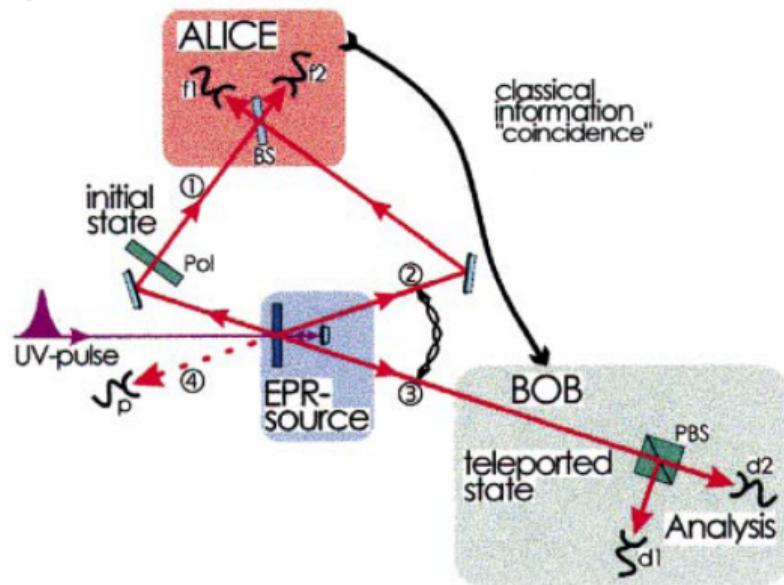
$$01 \longrightarrow X(a|1\rangle + b|0\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

$$10 \longrightarrow Z(a|0\rangle - b|1\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

$$11 \longrightarrow Y(a|1\rangle - b|0\rangle) = a|0\rangle + b|1\rangle = |\phi\rangle$$

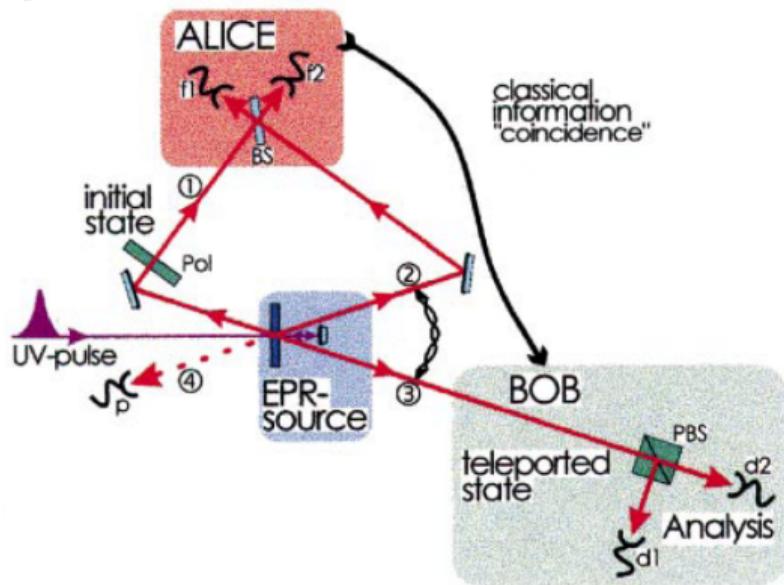
Quantum teleportation experiment

Experimental single photon teleportation using 3 and 4 coincidence measurements



Quantum teleportation experiment

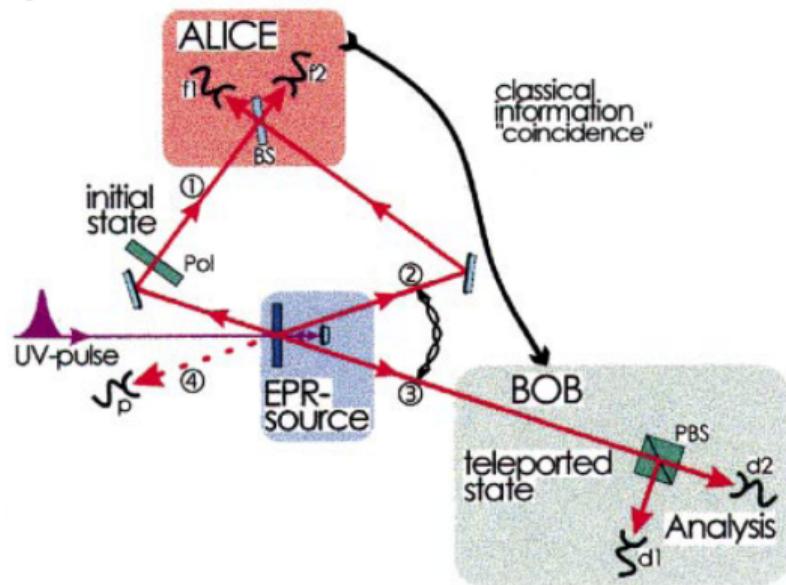
Experimental single photon teleportation using 3 and 4 coincidence measurements



Parametric down-conversion produces an EPR pair 2 & 3 in state
 $|\Psi^-\rangle_{23} = \frac{1}{\sqrt{2}}(|\rightarrow\rangle|\uparrow\rangle - |\uparrow\rangle|\rightarrow\rangle)$

Quantum teleportation experiment

Experimental single photon teleportation using 3 and 4 coincidence measurements

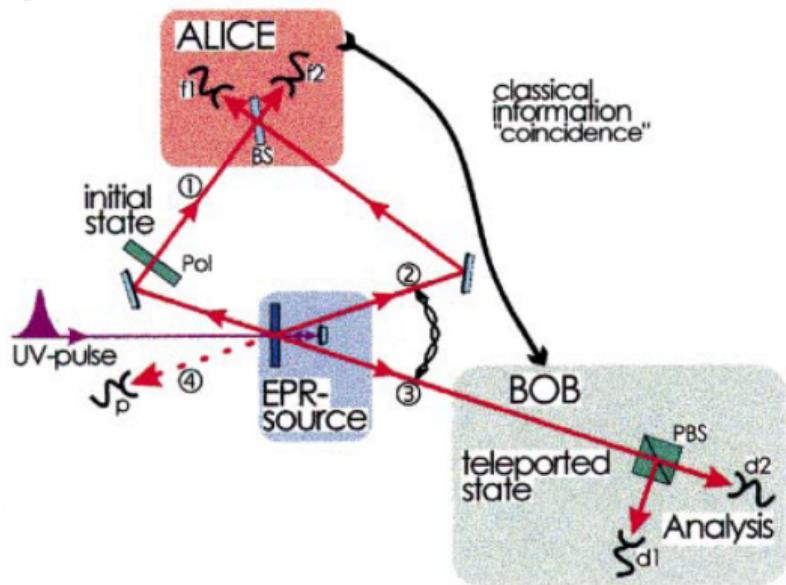


Parametric down-conversion produces an EPR pair 2 & 3 in state
 $|\Psi^-\rangle_{23} = \frac{1}{\sqrt{2}}(|\rightarrow\rangle|\uparrow\rangle - |\uparrow\rangle|\rightarrow\rangle)$

The reflected beam produces photons 1 & 4

Quantum teleportation experiment

Experimental single photon teleportation using 3 and 4 coincidence measurements



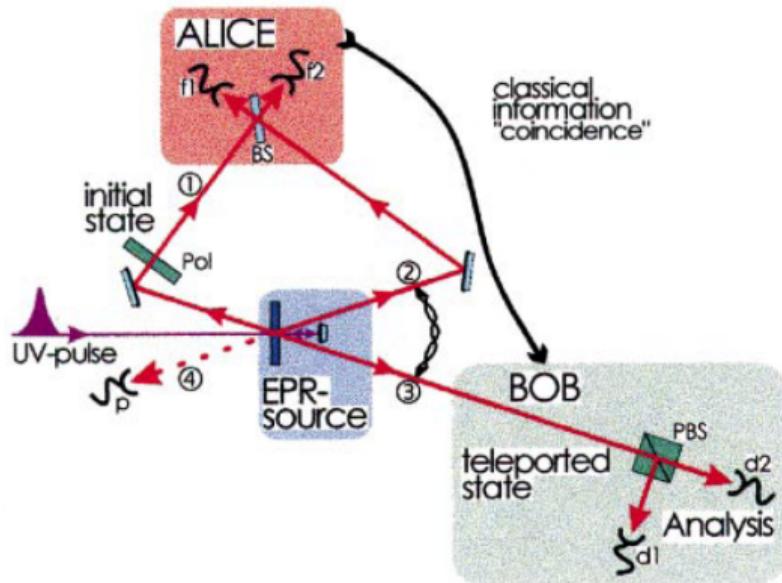
Parametric down-conversion produces an EPR pair 2 & 3 in state
 $|\Psi^-\rangle_{23} = \frac{1}{\sqrt{2}}(|\rightarrow\rangle|\uparrow\rangle - |\uparrow\rangle|\rightarrow\rangle)$

The reflected beam produces photons 1 & 4

1 & 2 are mixed in a beam splitter and a coincidence is detected by detectors f_1 and f_2 if Bell state $|\Psi^-\rangle_{12} = \frac{1}{\sqrt{2}}(|\rightarrow\rangle|\uparrow\rangle - |\uparrow\rangle|\rightarrow\rangle)$ is present

Quantum teleportation experiment

Experimental single photon teleportation using 3 and 4 coincidence measurements



Parametric down-conversion produces an EPR pair 2 & 3 in state
 $|\Psi^-\rangle_{23} = \frac{1}{\sqrt{2}}(|\rightarrow\rangle|\uparrow\rangle - |\uparrow\rangle|\rightarrow\rangle)$

The reflected beam produces photons 1 & 4

1 & 2 are mixed in a beam splitter and a coincidence is detected by detectors f_1 and f_2 if Bell state $|\Psi^-\rangle_{12} = \frac{1}{\sqrt{2}}(|\rightarrow\rangle|\uparrow\rangle - |\uparrow\rangle|\rightarrow\rangle)$ is present

Bob measures photon 3 with a polarizing beam splitter and two detectors d_1 and d_2 when he knows that Alice has the Bell state $|\Psi^-\rangle_{12}$

Quantum teleportation experiment

Initial experiment with photon 1 polarized at 45°

Quantum teleportation experiment

Initial experiment with photon 1 polarized at 45°

Coincidence between f_1 and f_2 will occur 25% of the time

Quantum teleportation experiment

Initial experiment with photon 1 polarized at 45°

Coincidence between f_1 and f_2 will occur 25% of the time

Bob's polarizer is also set to 45° and detector d_2 should give a coincident pulse with f_1 and f_2 to demonstrate teleportation

Quantum teleportation experiment

Initial experiment with photon 1 polarized at 45°

Coincidence between f_1 and f_2 will occur 25% of the time

Bob's polarizer is also set to 45° and detector d_2 should give a coincident pulse with f_1 and f_2 to demonstrate teleportation

A variable delay is applied to photon 2 to obtain the temporal overlap needed for the Bell-state measurement

Quantum teleportation experiment

Initial experiment with photon 1 polarized at 45°

Coincidence between f_1 and f_2 will occur 25% of the time

Bob's polarizer is also set to 45° and detector d_2 should give a coincident pulse with f_1 and f_2 to demonstrate teleportation

A variable delay is applied to photon 2 to obtain the temporal overlap needed for the Bell-state measurement

Coincidence between d_1 , f_1 , and f_2 should drop to zero when teleportation occurs

Quantum teleportation experiment

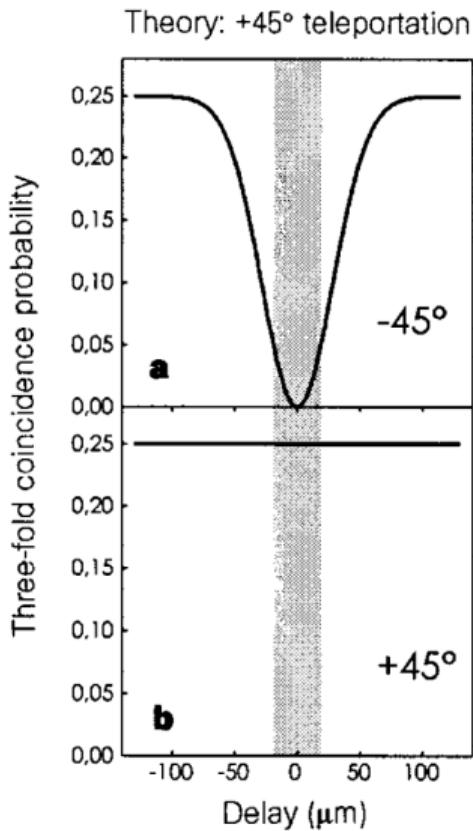
Initial experiment with photon 1 polarized at 45°

Coincidence between f_1 and f_2 will occur 25% of the time

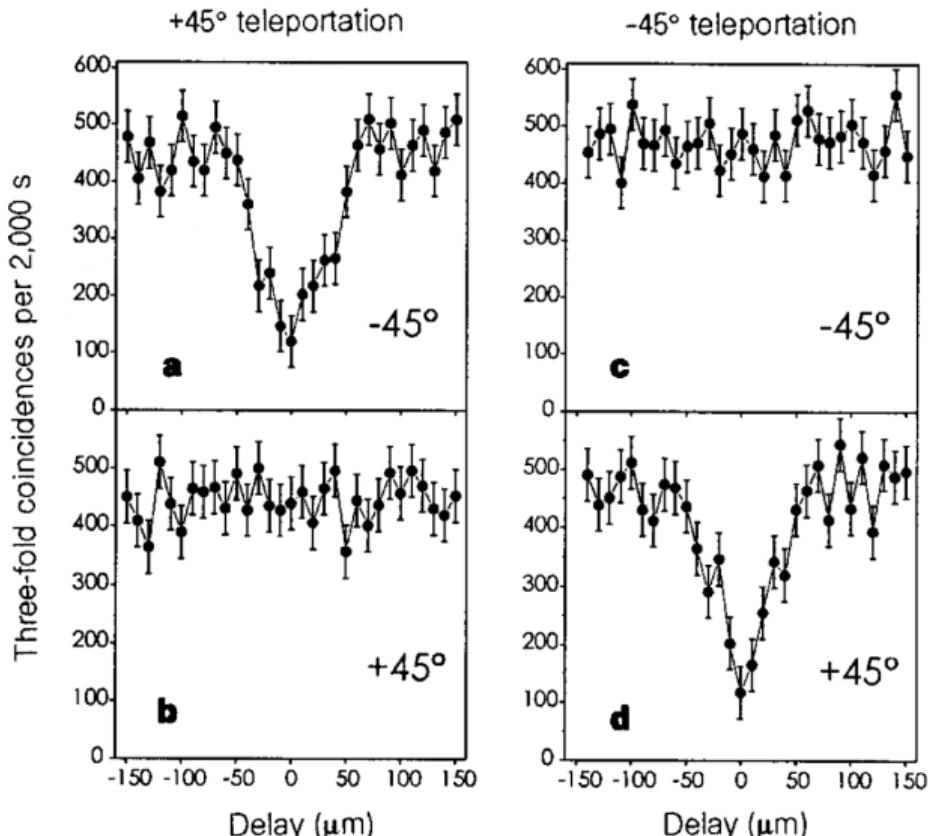
Bob's polarizer is also set to 45° and detector d_2 should give a coincident pulse with f_1 and f_2 to demonstrate teleportation

A variable delay is applied to photon 2 to obtain the temporal overlap needed for the Bell-state measurement

Coincidence between d_1 , f_1 , and f_2 should drop to zero when teleportation occurs



Quantum teleportation: three photon coincidence



Quantum teleportation experiment

These results are confirmed by measuring a number of different polarizations

Quantum teleportation experiment

These results are confirmed by measuring a number of different polarizations

<i>Polarization</i>	<i>Visibility</i>
$+45^\circ$	0.63 ± 0.02
-45°	0.64 ± 0.02
0°	0.66 ± 0.02
90°	0.61 ± 0.02
<i>Circular</i>	0.57 ± 0.02

Visibility is a measure of the dip

Quantum teleportation experiment

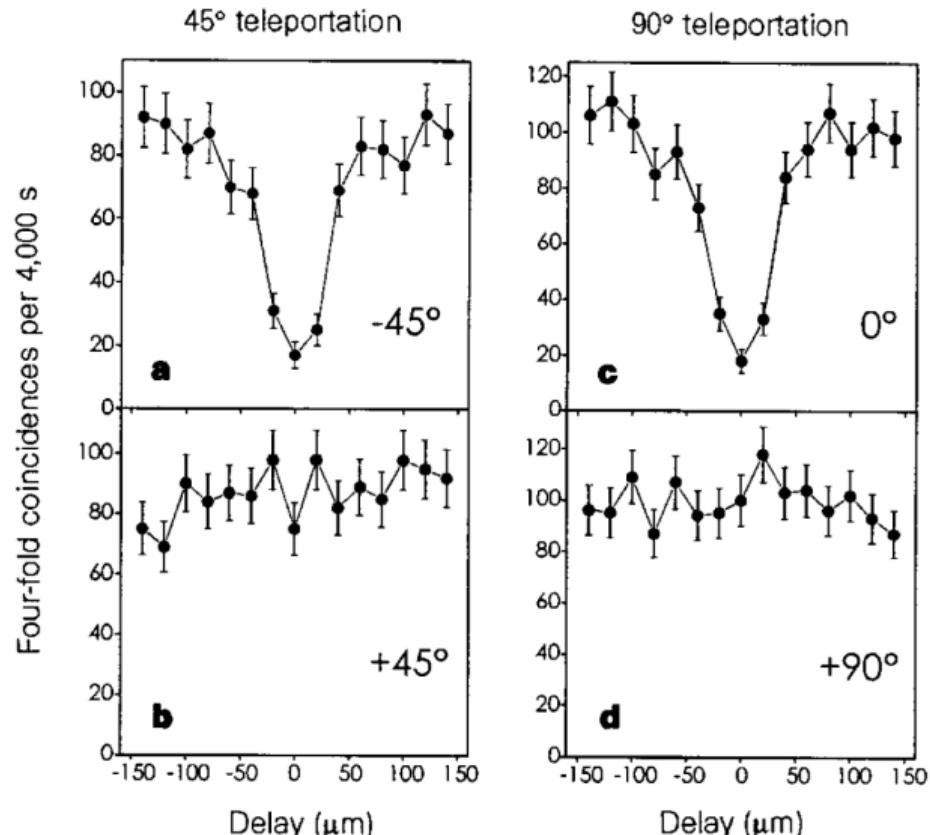
These results are confirmed by measuring a number of different polarizations

<i>Polarization</i>	<i>Visibility</i>
$+45^\circ$	0.63 ± 0.02
-45°	0.64 ± 0.02
0°	0.66 ± 0.02
90°	0.61 ± 0.02
<i>Circular</i>	0.57 ± 0.02

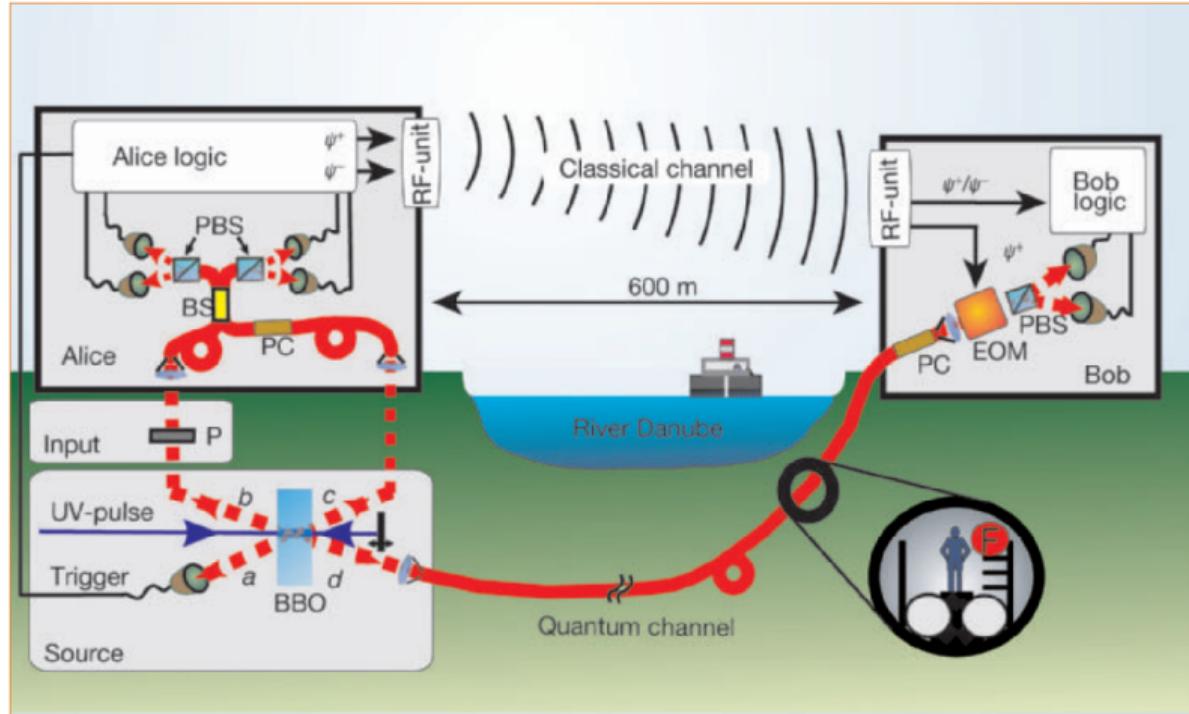
Visibility is a measure of the dip

The background in the three-photon coincidence can be eliminated at the cost of forcing photon 1 into a single particle state by measuring the coincidence with photon 4 in detector p

Quantum teleportation: four photon coincidence



Quantum teleportation over long distance



"Quantum teleportation across the Danube," R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, *Nature* **430**, 849 (2004).

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$,

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$,

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix}$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$,

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix}$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$,

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix}$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix}$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2)$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2) \quad R(\beta_1 + \beta_2) = R(\beta_1)R(\beta_2)$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2) \quad R(\beta_1 + \beta_2) = R(\beta_1)R(\beta_2) \quad T(\alpha_1 + \alpha_2) = T(\alpha_1)T(\alpha_2)$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2) \quad R(\beta_1 + \beta_2) = R(\beta_1)R(\beta_2) \quad T(\alpha_1 + \alpha_2) = T(\alpha_1)T(\alpha_2)$$

furthermore, the phase shift operator $K(\delta)$ commutes with both $R(\beta)$ and $T(\alpha)$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2) \quad R(\beta_1 + \beta_2) = R(\beta_1)R(\beta_2) \quad T(\alpha_1 + \alpha_2) = T(\alpha_1)T(\alpha_2)$$

furthermore, the phase shift operator $K(\delta)$ commutes with both $R(\beta)$ and $T(\alpha)$

$$[K(\delta), R(\beta)] = K(\delta)R(\beta) - R(\beta)K(\delta) = 0$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2) \quad R(\beta_1 + \beta_2) = R(\beta_1)R(\beta_2) \quad T(\alpha_1 + \alpha_2) = T(\alpha_1)T(\alpha_2)$$

furthermore, the phase shift operator $K(\delta)$ commutes with both $R(\beta)$ and $T(\alpha)$

$$[K(\delta), R(\beta)] = K(\delta)R(\beta) - R(\beta)K(\delta) = 0 \quad [K(\delta), T(\alpha)] = K(\delta)T(\alpha) - T(\alpha)K(\delta) = 0$$

Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of transformations, phase shifts $K(\delta)$, rotations $R(\beta)$, and phase rotations $T(\alpha)$

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

with the properties that

$$K(\delta_1 + \delta_2) = K(\delta_1)K(\delta_2) \quad R(\beta_1 + \beta_2) = R(\beta_1)R(\beta_2) \quad T(\alpha_1 + \alpha_2) = T(\alpha_1)T(\alpha_2)$$

furthermore, the phase shift operator $K(\delta)$ commutes with both $R(\beta)$ and $T(\alpha)$

$$[K(\delta), R(\beta)] = K(\delta)R(\beta) - R(\beta)K(\delta) = 0 \quad [K(\delta), T(\alpha)] = K(\delta)T(\alpha) - T(\alpha)K(\delta) = 0$$

K applies a global phase shift and can be written just as the phase factor alone, $e^{i\delta}$, while $R(\alpha)$ and $T(\alpha)$ rotate the qubit by 2α about the y - and z - axes respectively

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

Because the transformation must be unitary we can write

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

Because the transformation must be unitary we can write

$$QQ^\dagger = I$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$QQ^\dagger = I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix}$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & u_{00}\overline{u_{10}} + u_{01}\overline{u_{11}} \\ u_{10}\overline{u_{00}} + u_{11}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & u_{00}\overline{u_{10}} + u_{01}\overline{u_{11}} \\ u_{10}\overline{u_{00}} + u_{11}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & \overline{u_{00}}\overline{u_{10}} + \overline{u_{01}}\overline{u_{11}} \\ \overline{u_{10}}\overline{u_{00}} + \overline{u_{11}}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Rearrange the off-diagonal terms and multiply them together

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & \overline{u_{00}}\overline{u_{10}} + \overline{u_{01}}\overline{u_{11}} \\ \overline{u_{10}}\overline{u_{00}} + \overline{u_{11}}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Rearrange the off-diagonal terms and multiply them together

$$u_{00}\overline{u_{10}} = -u_{11}\overline{u_{01}}, \quad \overline{u_{00}}u_{10} = -\overline{u_{11}}u_{01}$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & \overline{u_{00}}\overline{u_{10}} + \overline{u_{01}}\overline{u_{11}} \\ \overline{u_{10}}\overline{u_{00}} + \overline{u_{11}}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Rearrange the off-diagonal terms and multiply them together

$$u_{00}\overline{u_{10}} = -u_{11}\overline{u_{01}}, \quad \overline{u_{00}}u_{10} = -\overline{u_{11}}u_{01} \quad \rightarrow \quad |u_{00}|^2|u_{10}|^2 = |u_{11}|^2|u_{01}|^2$$

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & \overline{u_{00}}\overline{u_{10}} + \overline{u_{01}}\overline{u_{11}} \\ \overline{u_{10}}\overline{u_{00}} + \overline{u_{11}}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Rearrange the off-diagonal terms and multiply them together

$$\overline{u_{00}}\overline{u_{10}} = -\overline{u_{11}}\overline{u_{01}}, \quad \overline{u_{00}}u_{10} = -\overline{u_{11}}u_{01} \quad \rightarrow \quad |u_{00}|^2|u_{10}|^2 = |u_{11}|^2|u_{01}|^2$$

Solve for $|u_{01}|^2$ and $|u_{10}|^2$ and use these in combination with the two equations from the diagonal terms

Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations and phase shifts such that $Q = K(\delta)T(\alpha)R(\beta)T(\gamma)$

The general form of the transformation
 Q is given by

Because the transformation must be unitary we can write

The off-diagonal elements must equal 0
and the diagonal elements must equal 1

$$Q = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

$$\begin{aligned} QQ^\dagger &= I = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \overline{u_{00}} & \overline{u_{10}} \\ \overline{u_{01}} & \overline{u_{11}} \end{pmatrix} \\ &= \begin{pmatrix} |u_{00}|^2 + |u_{01}|^2 & u_{00}\overline{u_{10}} + u_{01}\overline{u_{11}} \\ u_{10}\overline{u_{00}} + u_{11}\overline{u_{01}} & |u_{10}|^2 + |u_{11}|^2 \end{pmatrix} \end{aligned}$$

Rearrange the off-diagonal terms and multiply them together

$$u_{00}\overline{u_{10}} = -u_{11}\overline{u_{01}}, \quad \overline{u_{00}}u_{10} = -\overline{u_{11}}u_{01} \quad \rightarrow \quad |u_{00}|^2|u_{10}|^2 = |u_{11}|^2|u_{01}|^2$$

Solve for $|u_{01}|^2$ and $|u_{10}|^2$ and use these in combination with the two equations from the diagonal terms

$$|u_{00}|^2 + |u_{01}|^2 = 1, \quad |u_{10}|^2 + |u_{11}|^2 = 1$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

$$|u_{00}|^2 + |u_{01}|^2 = 1 \longrightarrow |u_{00}| = \cos \beta, |u_{01}| = \sin \beta$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

$$|u_{00}|^2 + |u_{01}|^2 = 1 \longrightarrow |u_{00}| = \cos \beta, |u_{01}| = \sin \beta$$

$$|u_{10}|^2 + |u_{11}|^2 = 1 \longrightarrow |u_{11}| = \cos \beta, |u_{10}| = \sin \beta$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

$$|u_{00}|^2 + |u_{01}|^2 = 1 \longrightarrow |u_{00}| = \cos \beta, |u_{01}| = \sin \beta$$

$$|u_{10}|^2 + |u_{11}|^2 = 1 \longrightarrow |u_{11}| = \cos \beta, |u_{10}| = \sin \beta$$

The absolute values imply that there is an arbitrary phase factor associated with each element in the matrix

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

$$|u_{00}|^2 + |u_{01}|^2 = 1 \longrightarrow |u_{00}| = \cos \beta, |u_{01}| = \sin \beta$$

$$|u_{10}|^2 + |u_{11}|^2 = 1 \longrightarrow |u_{11}| = \cos \beta, |u_{10}| = \sin \beta$$

The absolute values imply that there is an arbitrary phase factor associated with each element in the matrix

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix}$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

$$|u_{00}|^2 + |u_{01}|^2 = 1 \longrightarrow |u_{00}| = \cos \beta, |u_{01}| = \sin \beta$$

$$|u_{10}|^2 + |u_{11}|^2 = 1 \longrightarrow |u_{11}| = \cos \beta, |u_{10}| = \sin \beta$$

The absolute values imply that there is an arbitrary phase factor associated with each element in the matrix

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix}$$

The phase factors are constrained by the relation

$$u_{10} \overline{u_{00}} + u_{11} \overline{u_{01}} = 0$$

Operator decomposition (cont.)

$$|u_{01}|^2 = |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2}$$

$$1 = |u_{00}|^2 + |u_{01}|^2$$

$$|u_{00}|^2 + |u_{10}|^2 \frac{|u_{00}|^2}{|u_{11}|^2} = 1 \longrightarrow |u_{00}|^2 |u_{11}|^2 + |u_{10}|^2 |u_{00}|^2 = |u_{11}|^2 = |u_{00}|^2 (|u_{11}|^2 + |u_{10}|^2)$$

Thus we find that $|u_{00}|^2 = |u_{11}|^2$ and by consequence $|u_{01}|^2 = |u_{10}|^2$ and

$$|u_{00}|^2 + |u_{01}|^2 = 1 \longrightarrow |u_{00}| = \cos \beta, |u_{01}| = \sin \beta$$

$$|u_{10}|^2 + |u_{11}|^2 = 1 \longrightarrow |u_{11}| = \cos \beta, |u_{10}| = \sin \beta$$

The absolute values imply that there is an arbitrary phase factor associated with each element in the matrix

The phase factors are constrained by the relation
 $u_{10}\overline{u_{00}} + u_{11}\overline{u_{01}} = 0$

$$|u_{10}|^2 = |u_{01}|^2 \frac{|u_{11}|^2}{|u_{00}|^2}$$

$$1 = |u_{10}|^2 + |u_{11}|^2$$

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix}$$

$$\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix}$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

This selection can be shown to satisfy $\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$

$$\theta_{00} = \delta + \alpha + \gamma$$

$$\theta_{01} = \delta + \alpha - \gamma$$

$$\theta_{10} = \delta - \alpha + \gamma$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

This selection can be shown to satisfy $\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$

$$\theta_{00} = \delta + \alpha + \gamma$$

$$\theta_{11} = \theta_{10} - \theta_{00} + \theta_{01}$$

$$\theta_{01} = \delta + \alpha - \gamma$$

$$\theta_{10} = \delta - \alpha + \gamma$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

This selection can be shown to satisfy $\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$

$$\theta_{00} = \delta + \alpha + \gamma$$

$$\theta_{01} = \delta + \alpha - \gamma$$

$$\theta_{10} = \delta - \alpha + \gamma$$

$$\theta_{11} = \theta_{10} - \theta_{00} + \theta_{01}$$

$$= \delta - \alpha + \gamma - \delta - \alpha - \gamma + \delta + \alpha - \gamma$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

This selection can be shown to satisfy $\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$

$$\theta_{00} = \delta + \alpha + \gamma$$

$$\theta_{01} = \delta + \alpha - \gamma$$

$$\theta_{10} = \delta - \alpha + \gamma$$

$$\theta_{11} = \theta_{10} - \theta_{00} + \theta_{01}$$

$$= \delta - \alpha + \gamma - \delta - \alpha - \gamma + \delta + \alpha - \gamma$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

This selection can be shown to satisfy $\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$

$$\theta_{00} = \delta + \alpha + \gamma$$

$$\theta_{01} = \delta + \alpha - \gamma$$

$$\theta_{10} = \delta - \alpha + \gamma$$

$$\theta_{11} = \theta_{10} - \theta_{00} + \theta_{01}$$

$$= \delta - \alpha + \gamma - \delta - \alpha - \gamma + \delta + \alpha - \gamma$$

$$= \delta - \alpha - \gamma$$

Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of $K(\delta)T(\alpha)R(\beta)T(\gamma)$ we write the matrix as

$$Q = \begin{pmatrix} e^{i\theta_{00}} \cos \beta & e^{i\theta_{01}} \sin \beta \\ -e^{i\theta_{10}} \sin \beta & e^{i\theta_{11}} \cos \beta \end{pmatrix} = K(\delta)T(\alpha)R(\beta)T(\gamma) = \begin{pmatrix} e^{i(\delta+\alpha+\gamma)} \cos \beta & e^{i(\delta+\alpha-\gamma)} \sin \beta \\ -e^{i(\delta-\alpha+\gamma)} \sin \beta & e^{i(\delta-\alpha-\gamma)} \cos \beta \end{pmatrix}$$

This selection can be shown to satisfy $\theta_{10} - \theta_{00} = \theta_{11} - \theta_{01}$

$$\theta_{00} = \delta + \alpha + \gamma$$

$$\theta_{01} = \delta + \alpha - \gamma$$

$$\theta_{10} = \delta - \alpha + \gamma$$

$$\theta_{11} = \theta_{10} - \theta_{00} + \theta_{01}$$

$$= \delta - \alpha + \gamma - \delta - \alpha - \gamma + \delta + \alpha - \gamma$$

$$= \delta - \alpha - \gamma$$

This is another form for the general unitary transformation which forms the building blocks, along with the C_{not} operator for all arbitrary n -qubit operators

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix}$$

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix}$$

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\Lambda Q = \Lambda K(\delta) \Lambda (T(\alpha)R(\beta)T(\gamma)) = (\Lambda K(\delta))(\Lambda Q')$

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\Lambda Q = \Lambda K(\delta) \Lambda (T(\alpha)R(\beta)T(\gamma)) = (\Lambda K(\delta))(\Lambda Q')$

The conditional phase shift, ΛK_δ can be implemented using

Singly controlled transformations

We wish to implement a controlled operator $\bigwedge Q$ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\bigwedge Q = \bigwedge K(\delta) \bigwedge (T(\alpha)R(\beta)T(\gamma)) = (\bigwedge K(\delta))(\bigwedge Q')$

The conditional phase shift, $\bigwedge K_\delta$ can be implemented using

$$\bigwedge K_\delta = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes K(\delta)$$

Singly controlled transformations

We wish to implement a controlled operator $\bigwedge Q$ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\bigwedge Q = \bigwedge K(\delta) \bigwedge (T(\alpha)R(\beta)T(\gamma)) = (\bigwedge K(\delta))(\bigwedge Q')$

The conditional phase shift, $\bigwedge K_\delta$ can be implemented using

$$\begin{aligned} \bigwedge K_\delta &= |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes K(\delta) \\ &= |0\rangle\langle 0| \otimes I + e^{i\delta}|1\rangle\langle 1| \otimes I \end{aligned}$$

Singly controlled transformations

We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\Lambda Q = \Lambda K(\delta) \Lambda (T(\alpha)R(\beta)T(\gamma)) = (\Lambda K(\delta))(\Lambda Q')$

The conditional phase shift, ΛK_δ can be implemented using

$$\begin{aligned} \Lambda K_\delta &= |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes K(\delta) \\ &= |0\rangle\langle 0| \otimes I + e^{i\delta}|1\rangle\langle 1| \otimes I \\ &= (K(\frac{\delta}{2})T(-\frac{\delta}{2})) \otimes I \end{aligned}$$

Singly controlled transformations

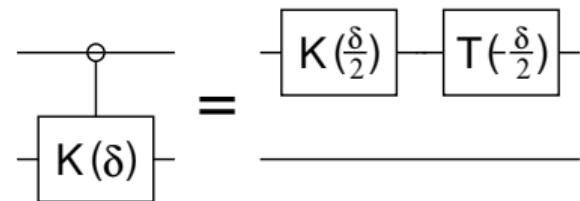
We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\Lambda Q = \Lambda K(\delta) \Lambda (T(\alpha)R(\beta)T(\gamma)) = (\Lambda K(\delta))(\Lambda Q')$

The conditional phase shift, ΛK_δ can be implemented using

$$\begin{aligned} \Lambda K_\delta &= |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes K(\delta) \\ &= |0\rangle\langle 0| \otimes I + e^{i\delta}|1\rangle\langle 1| \otimes I \\ &= (K(\frac{\delta}{2})T(-\frac{\delta}{2})) \otimes I \end{aligned}$$



Singly controlled transformations

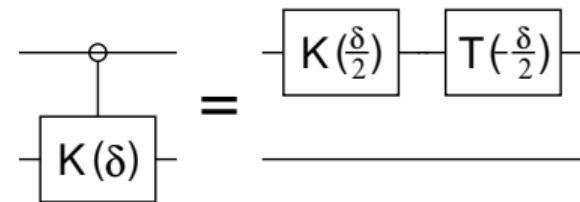
We wish to implement a controlled operator ΛQ where $Q = K(\delta)T(\alpha)R(\beta)T(\delta)$ and

$$K(\delta) = \begin{pmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{pmatrix} \quad R(\beta) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \quad T(\alpha) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$$

Because the $K(\delta)$ operator is a global phase shift it is possible to write that
 $\Lambda Q = \Lambda K(\delta) \Lambda (T(\alpha)R(\beta)T(\gamma)) = (\Lambda K(\delta))(\Lambda Q')$

The conditional phase shift, ΛK_δ can be implemented using

$$\begin{aligned} \Lambda K_\delta &= |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes K(\delta) \\ &= |0\rangle\langle 0| \otimes I + e^{i\delta}|1\rangle\langle 1| \otimes I \\ &= (K(\frac{\delta}{2})T(-\frac{\delta}{2})) \otimes I \end{aligned}$$



Note that the conditional phase shift is realized by acting on the first qubit only since a phase shift changes the entire state

Singly controlled transformations (cont.)

Implementing $\wedge Q'$ requires defining three additional transformations

Singly controlled transformations (cont.)

Implementing $\bigwedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right)$$

Singly controlled transformations (cont.)

Implementing $\Lambda Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

Singly controlled transformations (cont.)

Implementing $\wedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

$$Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right)$$

Singly controlled transformations (cont.)

Implementing $\bigwedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

$$Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right) = \begin{pmatrix} \cos \frac{-\beta}{2} & \sin \frac{-\beta}{2} \\ -\sin \frac{-\beta}{2} & \cos \frac{-\beta}{2} \end{pmatrix} \begin{pmatrix} e^{-i\left(\frac{\gamma+\alpha}{2}\right)} & 0 \\ 0 & e^{+i\left(\frac{\gamma+\alpha}{2}\right)} \end{pmatrix}$$

Singly controlled transformations (cont.)

Implementing $\bigwedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

$$Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right) = \begin{pmatrix} \cos \frac{-\beta}{2} & \sin \frac{-\beta}{2} \\ -\sin \frac{-\beta}{2} & \cos \frac{-\beta}{2} \end{pmatrix} \begin{pmatrix} e^{-i\left(\frac{\gamma+\alpha}{2}\right)} & 0 \\ 0 & e^{+i\left(\frac{\gamma+\alpha}{2}\right)} \end{pmatrix}$$

$$Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$

Singly controlled transformations (cont.)

Implementing $\bigwedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

$$Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right) = \begin{pmatrix} \cos \frac{-\beta}{2} & \sin \frac{-\beta}{2} \\ -\sin \frac{-\beta}{2} & \cos \frac{-\beta}{2} \end{pmatrix} \begin{pmatrix} e^{-i\left(\frac{\gamma+\alpha}{2}\right)} & 0 \\ 0 & e^{+i\left(\frac{\gamma+\alpha}{2}\right)} \end{pmatrix}$$

$$Q_2 = T\left(\frac{\gamma-\alpha}{2}\right) = \begin{pmatrix} e^{+i\left(\frac{\gamma-\alpha}{2}\right)} & 0 \\ 0 & e^{-i\left(\frac{\gamma-\alpha}{2}\right)} \end{pmatrix}$$

Singly controlled transformations (cont.)

Implementing $\bigwedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

$$Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right) = \begin{pmatrix} \cos \frac{-\beta}{2} & \sin \frac{-\beta}{2} \\ -\sin \frac{-\beta}{2} & \cos \frac{-\beta}{2} \end{pmatrix} \begin{pmatrix} e^{-i\left(\frac{\gamma+\alpha}{2}\right)} & 0 \\ 0 & e^{+i\left(\frac{\gamma+\alpha}{2}\right)} \end{pmatrix}$$

$$Q_2 = T\left(\frac{\gamma-\alpha}{2}\right) = \begin{pmatrix} e^{+i\left(\frac{\gamma-\alpha}{2}\right)} & 0 \\ 0 & e^{-i\left(\frac{\gamma-\alpha}{2}\right)} \end{pmatrix}$$

The assertion is that $\bigwedge Q' = (I \otimes Q_0)C_{not}(I \otimes Q_1)C_{not}(I \otimes Q_2)$, or in graphical terms

Singly controlled transformations (cont.)

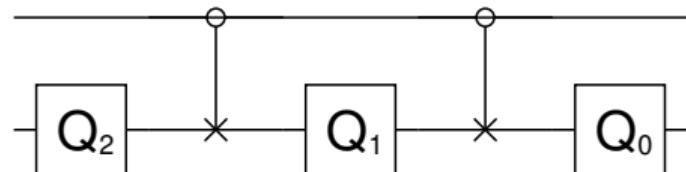
Implementing $\bigwedge Q'$ requires defining three additional transformations

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right) = \begin{pmatrix} e^{+i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix}$$

$$Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right) = \begin{pmatrix} \cos \frac{-\beta}{2} & \sin \frac{-\beta}{2} \\ -\sin \frac{-\beta}{2} & \cos \frac{-\beta}{2} \end{pmatrix} \begin{pmatrix} e^{-i\left(\frac{\gamma+\alpha}{2}\right)} & 0 \\ 0 & e^{+i\left(\frac{\gamma+\alpha}{2}\right)} \end{pmatrix}$$

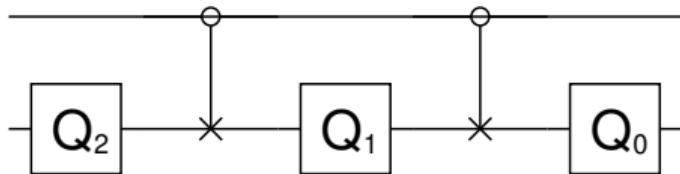
$$Q_2 = T\left(\frac{\gamma-\alpha}{2}\right) = \begin{pmatrix} e^{+i\left(\frac{\gamma-\alpha}{2}\right)} & 0 \\ 0 & e^{-i\left(\frac{\gamma-\alpha}{2}\right)} \end{pmatrix}$$

The assertion is that $\bigwedge Q' = (I \otimes Q_0)C_{not}(I \otimes Q_1)C_{not}(I \otimes Q_2)$, or in graphical terms



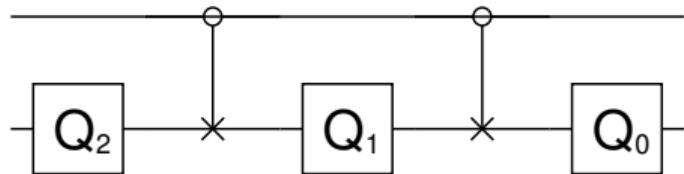
Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



Singly controlled transformations (cont.)

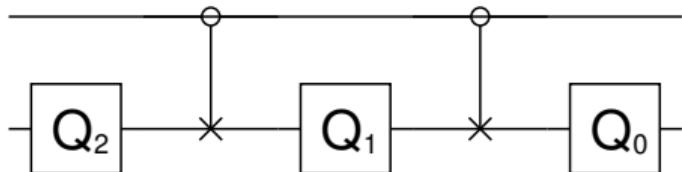
$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$

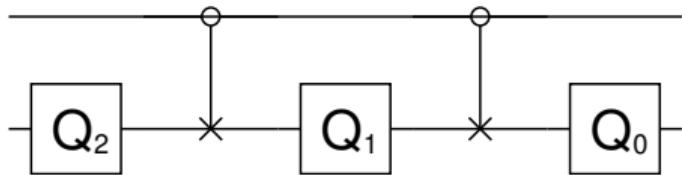


This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



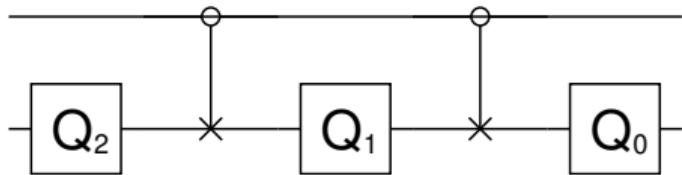
This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

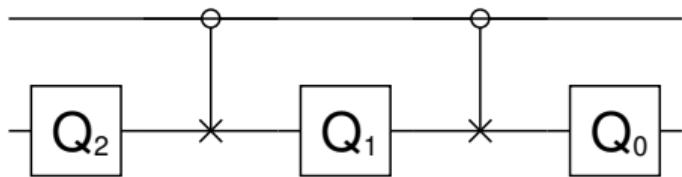
$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$Q_0 Q_1 Q_2 = T(\alpha)R\left(\frac{\beta}{2}\right)R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right)T\left(\frac{\gamma-\alpha}{2}\right)$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

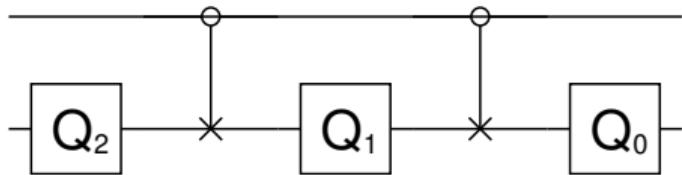
$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$Q_0 Q_1 Q_2 = T(\alpha)R\left(\frac{\beta}{2}\right)R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right)T\left(\frac{\gamma-\alpha}{2}\right)$$

but $R(\beta)R(-\beta) \equiv I$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

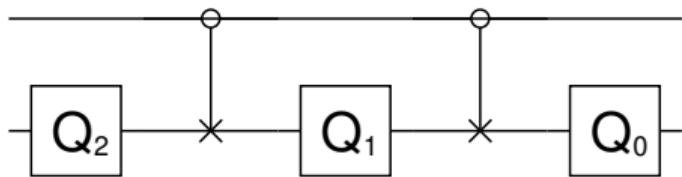
$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$\begin{aligned} Q_0 Q_1 Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) & \text{but } R(\beta)R(-\beta) \equiv I \\ &= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \end{aligned}$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$Q_0 Q_1 Q_2 = T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right)$$

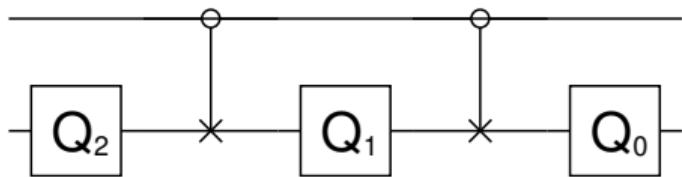
$$\text{but } R(\beta)R(-\beta) \equiv I$$

$$= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right)$$

$$\text{and } T(\alpha)T(\gamma) = T(\alpha + \gamma)$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

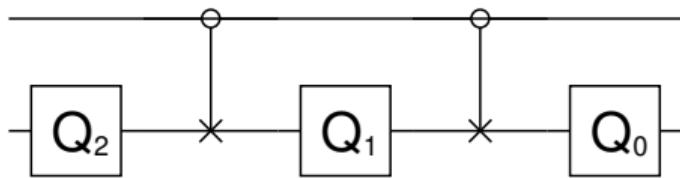
$$\begin{aligned} Q_0 Q_1 Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) \end{aligned}$$

but $R(\beta)R(-\beta) \equiv I$

and $T(\alpha)T(\gamma) = T(\alpha + \gamma)$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$Q_0 Q_1 Q_2 = T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right)$$

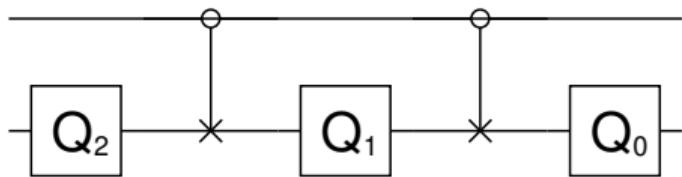
$$\text{but } R(\beta)R(-\beta) \equiv I$$

$$= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I$$

$$\text{and } T(\alpha) T(\gamma) = T(\alpha + \gamma)$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

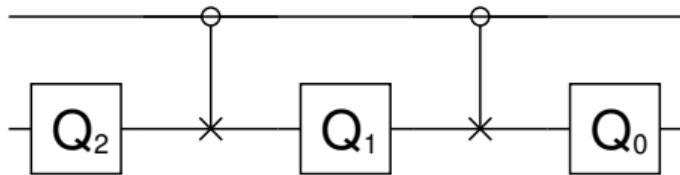
$$Q_0 Q_1 Q_2 = T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \quad \text{but } R(\beta)R(-\beta) \equiv I$$

$$= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I \quad \text{and } T(\alpha) T(\gamma) = T(\alpha + \gamma)$$

$$Q_0 X Q_1 X Q_2 = T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right)$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$Q_0 Q_1 Q_2 = T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \quad \text{but } R(\beta)R(-\beta) \equiv I$$

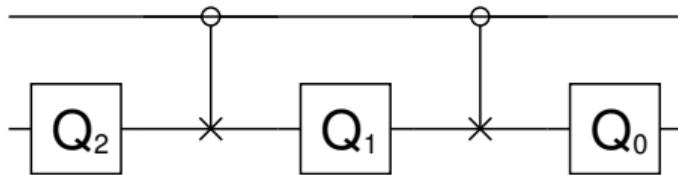
$$= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I \quad \text{and } T(\alpha) T(\gamma) = T(\alpha + \gamma)$$

$$Q_0 X Q_1 X Q_2 = T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right)$$

$$= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) X X T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right)$$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$\begin{aligned} Q_0 Q_1 Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I \end{aligned}$$

but $R(\beta)R(-\beta) \equiv I$

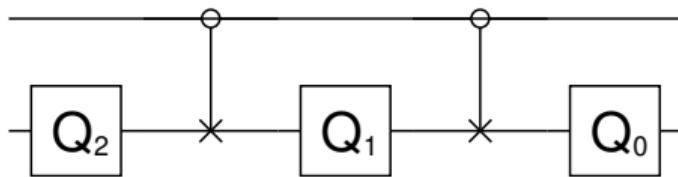
and $T(\alpha)T(\gamma) = T(\alpha + \gamma)$

$$\begin{aligned} Q_0 X Q_1 X Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) X X T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \end{aligned}$$

but $X R(\beta) X = R(-\beta)$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$\begin{aligned} Q_0 Q_1 Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I \end{aligned}$$

but $R(\beta)R(-\beta) \equiv I$

and $T(\alpha)T(\gamma) = T(\alpha + \gamma)$

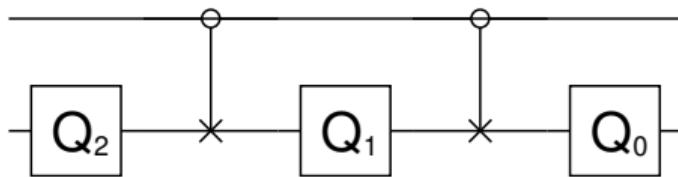
$$\begin{aligned} Q_0 X Q_1 X Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) X X T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \end{aligned}$$

but $X R(\beta) X = R(-\beta)$

and $X T(\alpha) X = T(-\alpha)$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$\begin{aligned} Q_0 Q_1 Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I \end{aligned}$$

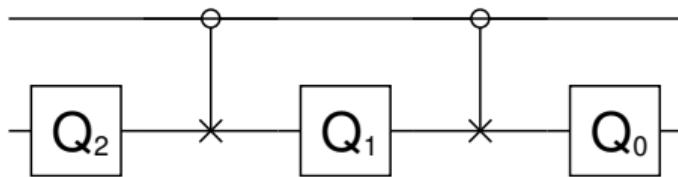
but $R(\beta)R(-\beta) \equiv I$
and $T(\alpha)T(\gamma) = T(\alpha + \gamma)$

$$\begin{aligned} Q_0 X Q_1 X Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) X X T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(\frac{\beta}{2}\right) T\left(\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \end{aligned}$$

but $X R(\beta) X = R(-\beta)$
and $X T(\alpha) X = T(-\alpha)$

Singly controlled transformations (cont.)

$$Q_0 = T(\alpha)R\left(\frac{\beta}{2}\right), \quad Q_1 = R\left(-\frac{\beta}{2}\right)T\left(-\frac{\gamma+\alpha}{2}\right), \quad Q_2 = T\left(\frac{\gamma-\alpha}{2}\right)$$



This circuit does the following

$$|0\rangle \otimes |x\rangle \longrightarrow |0\rangle \otimes Q_0 Q_1 Q_2 |x\rangle$$

$$|1\rangle \otimes |x\rangle \longrightarrow |1\rangle \otimes Q_0 X Q_1 X Q_2 |x\rangle$$

$$\begin{aligned} Q_0 Q_1 Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) T\left(-\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) = T(\alpha) T(-\alpha) = I \end{aligned}$$

but $R(\beta)R(-\beta) \equiv I$

and $T(\alpha)T(\gamma) = T(\alpha + \gamma)$

$$\begin{aligned} Q_0 X Q_1 X Q_2 &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R\left(\frac{\beta}{2}\right) X R\left(-\frac{\beta}{2}\right) X X T\left(-\frac{\gamma+\alpha}{2}\right) X T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R\left(\frac{\beta}{2}\right) R\left(\frac{\beta}{2}\right) T\left(\frac{\gamma+\alpha}{2}\right) T\left(\frac{\gamma-\alpha}{2}\right) \\ &= T(\alpha) R(\beta) T(\gamma) = Q' \end{aligned}$$

but $X R(\beta) X = R(-\beta)$

and $X T(\alpha) X = T(-\alpha)$