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Quantum teleportation

Another common application is quantum
teleportation, where Alice wants to trans- 10) ] 10)
mit an unknown qubit, |¢) = a|0) + b|1), to classical channel |

Bob by means of two classical bits A A\ B

~ -
~
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Quantum teleportation V
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Quantum teleportation V
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)

Alice now measures her two qubits and gets one of four states |00), [01), |10), |11) with equal
probability and sends the 2 classical bit result to Bob
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Quantum teleportation experiment \ 74

Experimental single photon teleportation using 3 and 4 coincidence measurements
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Experimental single photon teleportation using 3 and 4 coincidence measurements

Parametric down-conversion produces an
EPR pair 2 & 3 in state

V)23 = Z5(1=)[1) = 1))
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Quantum teleportation experiment \ 74

Experimental single photon teleportation using 3 and 4 coincidence measurements

Parametric down-conversion produces an
EPR pair 2 & 3 in state

W)es = 5(1)11) = 1))
The reflected beam produces photons 1 & 4

1 & 2 are mixed in a beam splitter and a
coincidence is detected by detectors f; and f»
if Bell state [W™)12 = Z5(1=)[ 1) [ 1))
is present
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Quantum teleportation experiment

A\

Experimental single photon teleportation using 3 and 4 coincidence measurements

Carlo Segre (lllinois Tech)

PHYS 407 - Introduction to Quantum Computing

Parametric down-conversion produces an
EPR pair 2 & 3 in state

W)es = 5(1)11) = 1))
The reflected beam produces photons 1 & 4

1 & 2 are mixed in a beam splitter and a
coincidence is detected by detectors f; and f»
if Bell state [W™)12 = Z5(1=)[ 1) [ 1))
is present

Bob measures photon 3 with a polarizing
beam splitter and two detectors di and d»
when he knows that Alice has the Bell state
V)12
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Quantum teleportation experiment \ 74

Initial experiment with photon 1 polarized at 45°
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Quantum teleportation experiment A
Initial experiment with photon 1 polarized at 45°

Coincidence between f; and f will occur 25% of the time
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Quantum teleportation experiment 7
Initial experiment with photon 1 polarized at 45°
Coincidence between f; and f will occur 25% of the time

Bob's polarizer is also set to 45° and detector d» should
give a coincident pulse with f; and £ to demonstrate
teleportation
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Quantum teleportation experiment V
Initial experiment with photon 1 polarized at 45°
Coincidence between f; and f will occur 25% of the time

Bob's polarizer is also set to 45° and detector d» should
give a coincident pulse with f; and £ to demonstrate
teleportation

A variable delay is applied to photon 2 to obtain the
temporal overlap needed for the Bell-state measurement
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Quantum teleportation experiment V
Initial experiment with photon 1 polarized at 45°
Coincidence between f; and f will occur 25% of the time

Bob's polarizer is also set to 45° and detector d» should
give a coincident pulse with f; and £ to demonstrate
teleportation

A variable delay is applied to photon 2 to obtain the
temporal overlap needed for the Bell-state measurement

Coincidence between dy, fi, and f, should drop to zero
when teleportation occurs
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Quantum teleportation experiment i

Theory: +456° teleportation
Initial experiment with photon 1 polarized at 45°
025}

0,20
Coincidence between f; and f will occur 25% of the time
0,15

0,10
Bob's polarizer is also set to 45° and detector d» should

give a coincident pulse with f; and £ to demonstrate
teleportation

0,05

0.00
0.25

0.2
A variable delay is applied to photon 2 to obtain the

015}
temporal overlap needed for the Bell-state measurement

Three-fold coincidence probability

. . 0,05
Coincidence between dy, fi, and f, should drop to zero b

: 0.00
when teleportation occurs 0 50 0 50 100

Delay {(um)
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Quantum teleportation: three photon coincidence

Three-fold coincidences per 2,000 s

Carlo Segre (lllinois Tech)
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Quantum teleportation experiment vV

These results are confirmed by measuring a number of different polarizations
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Quantum teleportation experiment i

These results are confirmed by measuring a number of different polarizations

Polarization  Visibility

+45° 0.63 +0.02
—45° 0.64 + 0.02
0° 0.66 + 0.02
90° 0.61 +0.02

Circular 0.57 +0.02

Visibility is a measure of the dip
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Quantum teleportation experiment A\

These results are confirmed by measuring a number of different polarizations

Polarization  Visibility

+45° 0.63 +0.02
—45° 0.64 + 0.02
0° 0.66 + 0.02
90° 0.61 +0.02

Circular 0.57 +0.02

Visibility is a measure of the dip

The background in the three-photon coincidence can be eliminated at the cost of forcing
photon 1 into a single particle state by measuring the coincidence with photon 4 in detector p
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Quantum teleportation: four photon coincidence

Four-fold coincidences per 4,000 s

Carlo Segre (lllinois Tech)
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Quantum teleportation over long distance A\

Alice logic ) ) j‘(%as}ic/‘al éha\nne‘l

UV-pulse “lb. ! ci‘ ‘l
d B
‘a L

Trigger d
BBO

“Quantum teleportation across the Danube,” R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Linden-
thal, P. Walther, and A. Zeilinger, Nature 430, 849 (2004).
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Phase shift and rotation operators N

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(d),
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Phase shift and rotation operators v}"

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(f3),

ko= (G )

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 13/19



Phase shift and rotation operators 7

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(f3),

_ e 0 _ cosf3 sinf
K(é)_< 0 ei5> R(’B)_<—sinﬂ cosﬁ)
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Phase shift and rotation operators 7

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

_ e 0 _ cosf3 sinf
K(é)_< 0 ei5> R(’B)_<—sinﬂ cosﬁ)
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Phase shift and rotation operators i

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

[ €° 0 B cos3 sinf (et 0
ko =(5 &) re=( S0 a0y Tw- (% )
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Phase shift and rotation operators NS

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

K«s):(if e%) R(ﬁ>=<_cs?§§ ZT;?) T(O‘):<ezia ; >

e*la

with the properties that
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Phase shift and rotation operators NS

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

[ €° 0 B cos3 sinf (et 0
ko =(5 &) re=( S0 a0y Tw- (% )

with the properties that

K((Sl + 52) = K(51)K(52)
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Phase shift and rotation operators NS

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

[ €° 0 B cos3 sinf (et 0
ko =(5 &) re=( S0 a0y Tw- (% )

with the properties that

K (81 + 62) = K(61)K(2) R(B1 + B2) = R(B1)R(B2)
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Phase shift and rotation operators NS

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

m):(if e%) R(ﬁ>=<_cs?§§ ZT;?) T(O‘):<ezia ’ >

e*la

with the properties that

K(01+02) = K(61)K(02)  R(B1+B2) = R(B1)R(B2)  T(a1+az)= T(a1)T(a2)
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Phase shift and rotation operators

<

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

[ €° 0 B cos3 sinf (et 0
ko =(5 &) re=( S0 a0y Tw- (% )

with the properties that
K(01+d2) = K(61)K(d2)  R(B1+ B2) = R(B1)R(B2)  T(ea +az) = T(en)T(a2)

furthermore, the phase shift operator K(d) commutes with both R(/3) and T(«)
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Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

[ €° 0 B cos3 sinf (et 0
ko =(5 &) re=( S0 a0y Tw- (% )
with the properties that
K(01+d2) = K(61)K(d2)  R(B1+ B2) = R(B1)R(B2)  T(ea +az) = T(en)T(a2)

furthermore, the phase shift operator K(d) commutes with both R(/3) and T(«)

[K(6), R(B)] = K(9)R(B) — R(B)K(6) = O
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Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

ko= &) re=( 55 a5) Te=(% )
with the properties that
K(014d2) = K(61)K(02)  R(Bi+B2) = R(BL)R(B2)  T(oa+az) = T(aa)T(a2)
furthermore, the phase shift operator K(d) commutes with both R(/3) and T(«)

[K(6), R(B)] = K(O)R(B) — R(B)K(6) =0 [K(), T(a)] = K(§) T(a) — T(a)K(d) =0
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Phase shift and rotation operators

All single-qubit transformations can be written as a combination of three types of
transformations, phase shifts K(0), rotations R(3), and phase rotations T («)

ko= &) re=( 55 a5) Te=(% )
with the properties that
K(014d2) = K(61)K(02)  R(Bi+B2) = R(BL)R(B2)  T(oa+az) = T(aa)T(a2)
furthermore, the phase shift operator K(d) commutes with both R(/3) and T(«)
[K(6), R(B)] = K(O)R(B) — R(B)K(6) =0 [K(0), T(a)] = K(6) T(e) — T(a)K(5) =0

K applies a global phase shift and can be written just as the phase factor alone, e/®, while
R(«) and T(«) rotate the qubit by 2« about the y- and z- axes respectively
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Operator decomposition V

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()
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A\

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(0) T(«)R(8) T (7)

The general form of the transformation

Q is given by

Operator decomposition
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If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ oo toi >
Q is given by tio Um

Operator decomposition
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Operator decomposition V

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >
Q is given by tio Ui

Because the transformation must be uni-
tary we can write
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Operator decomposition

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations

and phase shifts such that Q = K(8) T(a)R(B) T (v)

The general form of the transformation Q= [ Yoo toi >
Q is given by tio Ui
Because the transformation must be uni- QQT y
tary we can write o
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Operator decomposition V

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio Ui

Because the transformation must be uni- 00t — 1 — Uugo  Up1 Tgo U0
tary we can write uio U1l o1 U1l
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Operator decomposition \ 4

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio Ui

Because the transformation must be uni- 00t — 1 — Uugo  Up1 Tgo U0
tary we can write uio U1l o1 U1l

_ ( |uoo|* + |uoa|*  uooTino + o1 TiT >
uoloo + t11tior  |u1o|? + |u11|?
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Operator decomposition V'

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >
Q is given by tio Ui

Because the transformation must be uni- 00t — 1 — Ugp Uol Ugo U10
tary we can write 0 v v Upr U1l
2 2 — e
( luo| + [uo1|*  wooTino + uo1tit >

The off-diagonal elements must equal 0
— — 2 2
uioloo + u11lor  |uiol” + |11

and the diagonal elements must equal 1
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Operator decomposition V'

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio 11

Because the transformation must be uni- 00t — 1 — Ugo Uo1 Too Uio

tary we can write 0\ ue unn To1 U1

The off-diagonal elements must equal 0 _ |lugo|® + |uo1|*  wootzo + uorlit
and the diagonal elements must equal 1 ur0loo + t11lior  |uto)? + |unr]?

Rearrange the off-diagonal terms and multiply them together
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Operator decomposition \d

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio 11

Because the transformation must be uni- 00t — 1 — Ugo Uo1 Too Uio

tary we can write 0\ ue unn To1 U1

The off-diagonal elements must equal 0 _ |lugo|® + |uo1|*  wootzo + uorlit
and the diagonal elements must equal 1 ur0loo + t11lior  |uto)? + |unr]?

Rearrange the off-diagonal terms and multiply them together

tUpol1p0 = —U11Uo1, Upol1p = —U11Uo1
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Operator decomposition \d

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio 11

Because the transformation must be uni- 00t — 1 — Ugo Uo1 Too Uio

tary we can write 0\ ue unn To1 U1

The off-diagonal elements must equal 0 _ |lugo|® + |uo1|*  wootzo + uorlit
and the diagonal elements must equal 1 ur0loo + t11lior  |uto)? + |unr]?

Rearrange the off-diagonal terms and multiply them together
— — — — 2 2 2 2
UooUio = —U11lot,  Uoouio = —Uittor —  |uoo|”|u10]” = |u11|"[uoa]
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Operator decomposition V'

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio 11

Because the transformation must be uni- 00t — 1 — Ugo Uo1 Too Uio

tary we can write 0\ ue unn To1 U1

The off-diagonal elements must equal 0 _ |lugo|® + |uo1|*  wootzo + uorlit
and the diagonal elements must equal 1 ur0loo + t11lior  |uto)? + |unr]?

Rearrange the off-diagonal terms and multiply them together
— — — — 2 2 2 2
UooUio = —U11lot,  Uoouio = —Uittor —  |uoo|”|u10]” = |u11|"[uoa]

Solve for |up1|? and |u10|? and use these in combination with the two equations from the
diagonal terms
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Operator decomposition V'

If Q is a single-qubit unitary transformation, it can be represented by a sequence of rotations
and phase shifts such that Q = K(9) T(a)R(5) T ()

The general form of the transformation Q= [ Yoo toi >

Q is given by tio 11

Because the transformation must be uni- 00t — 1 — Ugo Uo1 Too Uio

tary we can write 0\ ue unn To1 U1

The off-diagonal elements must equal 0 _ |lugo|® + |uo1|*  wootzo + uorliT
and the diagonal elements must equal 1 ur0loo + t11lior  |uol? + |un1]?

Rearrange the off-diagonal terms and multiply them together
upolio = —utnilion,  Uootno = —tiitor  —  |uool?*|u1ol?® = |una|*|uo1|?
Solve for |up1|? and |u10|? and use these in combination with the two equations from the
diagonal terms
|uoo|* + Juor[* =1, Jusol* + |unn|* =1
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Operator decomposition (cont.) V
|uoo|®
|11 ]?

|uo1|? = |urof?
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Operator decomposition (cont.) A

2
Uoo uii
|uor|* = |u10\2;ulll2 luo|? = |uo ‘z;uoolz
1= |ugo|* + |uo1|? 1= |ugol* + |u11)?
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Operator decomposition (cont.)

2

2 2’“00| 2 2’“11‘

uop = |U10 uip| = |Uo

o= e ol = leor
1 = |ugo|? + |uo1|? 1= |uol® + |u11/?
| ool

|ugo|? + |u10]? =

|u11]?
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Operator decomposition (cont.)

S
V
2 2
2 2 | Uoo| 2 2|un1]
uo1|® = |u u1ol® = |u
|uo1|* = |uso| P |luto|® = |uoa| P
1= |ugo|* + |uo1|? 1= |ugol* + |u11)?
]uoo\z—i- ‘u10’2|uoo\2

5 =1 — |uool*|un1]? + unof?|uool* =
|un1]
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Operator decomposition (cont.)

S
V
2 2
2 2 | Uoo| 2 2|un1]
U = |u u = | U
|uo1|* = |uso| PE |luto|® = |uoa| P
1= |ugo|* + |uo1|? 1= |uol?® + |un1)?
’U00‘2+‘U10’2|UO0‘2

PR 1 — Jugo|?|u11]* + |urol?|uoo|* = |un1|* = Juool* (Juna|* + [u10]?)
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Operator decomposition (cont.) A

’U00|2 |11
|uo1|? = |u1o? P luo|? = |uo \2’u00‘2
1 = [uoo|* + [uo1[* 1= |uol® + |un1f?
Ligo
’U00\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and
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Operator decomposition (cont.) i

’U00|2 |11
|uo1|? = |u1o? P luo|? = |uo \2’u00‘2
1 = [uoo|* + [uo1[* 1= |uol® + |un1f?
Ligo
’U00\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and

lugo|® + |uo1|> =1  —  |ugo| = cos B, |ug1| = sin B
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Operator decomposition (cont.) i

’U00|2 |11
|uo1|? = |u1o? P luo|? = |uo \2’u00‘2
1 = [uoo|* + [uo1[* 1= |uol® + |un1f?
Ligo
’U00\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and

lugo|® + |uo1|> =1  —  |ugo| = cos B, |ug1| = sin B

|u10]2+\u11|2:1 —  |u11| = cos B, |uip| =sin
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Operator decomposition (cont.) NG

2
Uoo uii
|luo1|* = |u10]? ;un:Z luto]? = |u01|2;uOO}2
1= |ugo|® + |up1|? 1= |uol?® + |un1)?
Uoo
’UOO\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and

lugo|® + |uo1|> =1  —  |ugo| = cos B, |ug1| = sin B

|u10]2+\u11|2:1 —  |u11| = cos B, |uip| =sin

The absolute values imply that there is an arbitrary
phase factor associated with each element in the
matrix
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Operator decomposition (cont.) NG

2
Uoo uii
|luo1|* = |u10]? ;un:Z luto]? = |u01|2;uOO}2
1= |ugo|® + |up1|? 1= |uol?® + |un1)?
Uoo
’UOO\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and

lugo|® + |uo1|> =1  —  |ugo| = cos B, |ug1| = sin B

|U10’2+‘U11|2:1 — |U11‘:COSB, |u10]:sinﬁ

The absolute values imply that there is an arbitrary

i0 001 ;
. . . e'?0 cos e'”0 sin
phase factor associated with each element in the Q= O - p io 8
matrix —e'%ogin 8 e'"11 cos 3
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Operator decomposition (cont.) NG

2
Uoo uii
|luo1|* = |u10]? ;un:Z luto]? = |u01|2;uO0}2
1= |ugo|* + |uo1|? 1= |uol?® + |un1)?
Uoo
’UOO\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and
luool® + |uor* =1 —  |uoo| = cos 3, |uor| =sin B
|U10’2+‘U11|2:1 — |U11‘:COSB, |u10]:sinﬁ

The absolute values imply that there is an arbitrary

i0 001 ;
. . . e'?0 cos e'”0 sin
phase factor associated with each element in the Q= 00 - p i 8
matrix —e'%ogin 8 e'"11 cos 3

The phase factors are constrained by the relation
u1oloo + u11tor = 0
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Operator decomposition (cont.) NG

2
Uoo uii
|luo1|* = |u10]? ;un:Z luto]? = |u01|2;uO0}2
1= |ugo|* + |uo1|? 1= |uol?® + |un1)?
Uoo
’UOO\2+\U10’2: 11} =1 — |uool*|ur1|* + uro*uool® = u11]? = |uoo|* (Jur1]* + |u10]?)

Thus we find that |ugo|?> = |u11]? and by consequence |up;|? = |u10|? and
luool® + |uor* =1 —  |uoo| = cos 3, |uor| =sin B
|U10’2+‘U11|2:1 — |U11‘:COSB, |u10]:sinﬁ

The absolute values imply that there is an arbitrary

i0 001 ;
. . . e'?0 cos e'”0 sin
phase factor associated with each element in the Q= 00 - p i 8
matrix —e'%ogin 8 e'"11 cos 3

The phase factors are constrained by the relation
u1oloo + u11tor = 0

610 — oo = 011 — Oo1
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Operator decomposition (cont.) NG

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

Q- et cos 3 el sin B
— \—e%osing el cos
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Operator decomposition (cont.)

A\

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

et cos 3 el sin B

i(0+aty) i(6+a—7) o
Q= <_ei910 sin 3 el COSIB> = K(é) T(OJ)R(,B) T(,-Y) — ( € cosf e smB)

—el0=atNgin g elld=2=7) cos 3
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Operator decomposition (cont.) \ 4

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

iBoo i001 <} i(5+a+'y) i(5+a7'~/) H
0= (S onon) = KOT@RATO) = (s ey Sto-avoms)

—el0=etsin g e/(0=2=) cos B

This selection can be shown to satisfy 619 — 0pg = 611 — 601

boo =9 +a+vy
901:5+a—7
010:6—a+7
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Operator decomposition (cont.) \ 4

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

iBoo i001 <} i(5+a+'y) i(5+a7'~/) H
0= (S onon) = KOT@RATO) = (s ey Sto-avoms)

—el0=etsin g e/(0=2=) cos B

This selection can be shown to satisfy 619 — 0pg = 611 — 601

boo =9 +a+vy
901:5+a—7
010:6—a+7

011 = 010 — boo + Oo1
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Operator decomposition (cont.) \ 4

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

iBoo i001 <} i(5+a+'y) i(5+a7'~/) H
0= (S onon) = KOT@RATO) = (s ey Sto-avoms)

—el0=etsin g e/(0=2=) cos B

This selection can be shown to satisfy 619 — 0pg = 611 — 601

boo =9 +a+vy
901:5+a—7
010:6—a+7

11 = 010 — too + Oo1
=d—a+y—-d—a—y+di+ta—v
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Operator decomposition (cont.) \ 4

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

iBoo i001 <} i(5+a+'y) i(5+a7'~/) H
0= (S onon) = KOT@RATO) = (s ey Sto-avoms)

—el0=etsin g e/(0=2=) cos B

This selection can be shown to satisfy 619 — 0pg = 611 — 601

boo =9 +a+vy
901:5+a—7
010:6—a+7

611 = 010 — oo + Oo1
=f—eat+y-F-a-y+ti+ta—vy
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Operator decomposition (cont.) \ 4

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

iBoo i001 <} i(5+a+'y) i(5+a7'~/) H
0= (S onony) = KOT@RATO) = (Sisrnns 5o yoms)

—el0=atNgin g e/l cos 3

This selection can be shown to satisfy 619 — 0pg = 611 — 601

boo =9 +a+vy
901:5+a—7
010:6—a+7

011 = 010 — boo + Oo1

=f—eat+y-F-a-y+ti+ta—vy
=)—a—v
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Operator decomposition (cont.)

Since we assert that Q can be decomposed into the combination of K(0) T (a)R(B) T (7y) we
write the matrix as

et cos 3 el sin B

i(0+aty) i(6+a—7) o
Q= <_ei910 sin 3 el COSIB> = K(é) T(Q)R(/@) T(,-Y) — ( € cosf e SInB)

—el0=atNgin g e/l cos 3

This selection can be shown to satisfy 619 — 0pg = 611 — 601

boo=0+a+y 611 = 010 — oo + bo1
o1 =0+a—vy =f-—aty—F-—a—y+ita—n
bio=90—a+y =0—a—v

This is another form for the general unitary transformation which forms the building blocks,
along with the C,o; operator for all arbitrary n-qubit operators
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Singly controlled transformations \4

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and
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Singly controlled transformations \4

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

ko) = (G )
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Singly controlled transformations \4

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

_ (€0 B cos3 sinf
K(é)_< 0 ei5> R(ﬁ)_<sinﬁ cosﬁ)
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Singly controlled transformations i

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

(€’ 0 B cosf  sinf3 (et 0
K(9) = < 0 e > R(B) = < —sinf3 cosf > T(a)= ( 0 eie >
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Singly controlled transformations vV

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

(€’ 0 B cosf  sinf3 (et 0
K(9) = < 0 e ) R(B) = < —sinf3 cosf > T(a)= ( 0 eie >

Because the K(9) operator is a global phase shift it is possible to write that

AQ=AKE NT(@RB)T()) = (AKO)AQ)
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Singly controlled transformations

<

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

id in ia
ko =(5 &) ro=( S0 a0y Tw=(% )
Because the K(9) operator is a global phase shift it is possible to write that
AQ=AKO)NT(@)RB)T() = (AK(E))A Q)

The conditional phase shift, /A K5 can be implemented using

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 17 /19



Singly controlled transformations

<

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

(€’ 0 B cosf  sinf3 (et 0
K(9) = < 0 e > R(B) = < —sinf3 cosf > T(a)= ( 0 eie >
Because the K(9) operator is a global phase shift it is possible to write that
AQ=AKO)NT(@)RB)T() = (AK(E))A Q)
The conditional phase shift, /A K5 can be implemented using
N\ Ks =10)(0] ® I + [1)(1] ® K(5)
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Singly controlled transformations

<

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

ko= (G %) re=( Sn Iy @ (5%
Because the K(9) operator is a global phase shift it is possible to write that
AQ=AKO)NT(@)RB)T() = (AK(E))A Q)

The conditional phase shift, /A K5 can be implemented using

N\ Ks =10)(0] ® I + [1)(1] ® K(5)

= y YOl @ 1+ e|1)(1]| @ 1
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Singly controlled transformations

<

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

ko= (G %) re=( Sn Iy @ (5%
Because the K(9) operator is a global phase shift it is possible to write that
AQ=AKO)NT(@)RB)T() = (AK(E))A Q)

The conditional phase shift, /A K5 can be implemented using

N Ks = 1000 @ 1 + |1)(1] ® K(5)
0)(0| @ I 4+ e?|1)(1| ® I
(KQT(-3) @]
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Singly controlled transformations vV

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

e 0 cosB sinf etic 0
ko =(5 &) ro=( S0 a0y Tw=(% )
Because the K(9) operator is a global phase shift it is possible to write that
AQ=AKO)NT(@)RB)T() = (AK(E))A Q)
The conditional phase shift, /A K5 can be implemented using
N\ Ks =10)(0] ® I + [1)(1] ® K(5)

) |
0)(0] @ I + € |1)(1| @ I =

— (KT(=D) ! wer

~
N
ol
N

T¢

oo
—
I
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Singly controlled transformations

We wish to implement a controlled operator A\ Q@ where Q = K(9) T(«)R(8) T(9) and

(€’ 0 B cosf  sinf3 (et 0

K(9) = < 0 e > R(B) = < —sinf3 cosf > T(a)= ( 0 eie >
Because the K(9) operator is a global phase shift it is possible to write that
AQ=AKO)NT(@)RB)T() = (AK(E))A Q)
The conditional phase shift, /A K5 can be implemented using

N\ Ks =100l & 1 +[1)(1] @ K(5) K 5

K@) HTEDF
0)(0] & 1+ e¥[1)(1] & 1 = ) =

(KOT(-9) @1 wer

Note that the conditional phase shift is realized by acting on the first qubit only since a phase
shift changes the entire state
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Singly controlled transformations (cont.) \4

Implementing A\ Q' requires defining three additional transformations
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Singly controlled transformations (cont.) \4

Implementing A\ Q' requires defining three additional transformations

Qo = T(a)R(5)
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Singly controlled transformations (cont.) \4

Implementing A\ Q' requires defining three additional transformations

+ia 0 B B
Qozr(a)R(§)=<e0 e_,-a)< "y 5'"%)

—S|n§ COS§

Jss
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Singly controlled transformations (cont.) \4

Implementing A\ Q' requires defining three additional transformations

+ia 0 B B
Qozr(a)R(§)=<e0 e_,-a)< "y 5'"%)

—S|n§ COS§

Jss
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Singly controlled transformations (cont.)

Implementing A\ Q' requires defining three additional transformations

eti®@ 0 cosg sing
0 e'® —sin cosg

Q= R(-2)T(~1t2) = cos 2 sinf JEE
o T 5 cosy 0 et

I
\'
2
=
ri\?/m
I
Js

Qo
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Singly controlled transformations (cont.)

Implementing A\ Q' requires defining three additional transformations

+ia 0 B B
QozT(a)R(§)=<e0 e_,-a)< "y 5'"%)

—S|n§ COS§

] yta cos%ﬁ sin %ﬁ e (3%
Q= R(=3)T(-57) = 3 =3 0 (e

Jss

—smT COST
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18/19



Singly controlled transformations (cont.)

Implementing A\ Q' requires defining three additional transformations

ta 0 cosZ  sinZ
— T(REY=( € , 2 2
Qo (@)R(3) < 0 e ) < —sin2 cos? >

Q= R(-2)T(~1t2) = cos 2 sinf JEE
- 27\ —sing? cos 0 eH(E)

o eTi(37) 0
@ = 7_(13f’) = (: a-ay )

Jss

0 e (3
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Singly controlled transformations (cont.)

Implementing A\ Q' requires defining three additional transformations

eti®@ 0 cosZ sinf
r@r@ = (% S ) (25 )

—S|n§ COS§

] yta cos%ﬁ sin %6 e (3%
Q=R(-5)T(-%") = 3 (e

—sin_T cos%ﬁ
+i(5*) 0
— T(r=ey_ [ ¢
@ = T( 2 )‘— < G_KE%E) )

The assertion is that AQ = (I ®
Q0) Chot (1 ® Q1) Crot (1 ® @2), or in graphical
terms

Qo

Jss
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Singly controlled transformations (cont.) i

Implementing A\ Q' requires defining three additional transformations

+ia 0 B B
Qozr(a)R(§)=<eO e_,-a)< "y s'"%)

—S|n§ COS§

] yta cos%ﬁ sin %6 e (3%
Q=R(-5)T(-%") = 3 (e

_cin =8 -8B
S|n2 COS2

+i(35%) 0
— Ty = €
Qz = T( ) )— < e_;(%) )

Jss

0
The assertion is that AQ = (I ®
Q0) Chot (1 ® Q1) Crot (1 ® @2), or in graphical
termsno no 1Q: Q ' Qo -
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Singly controlled transformations (cont.)

Q=T(@R(3), Q=R=5T(-4),

e

Carlo Segre (lllinois Tech)

Qo_

PHYS 407 - Introduction to Quantum Computing

February 01, 2022
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Singly controlled transformations (cont.)

Q=T(@R(3), Q=R=5T(-4),

e

Carlo Segre (lllinois Tech)

Qo_

PHYS 407 - Introduction to Quantum Computing

@

T(%%)

This circuit does the following
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Singly controlled transformations (cont.)

Qo = T(a)R(3),

e

Carlo Segre (lllinois Tech)

Qo

Q=R(-$T(-%2), Q=T(%2)

This circuit does the following
10) @ [x) — |0) ® Qo Q1 Q2|x)

PHYS 407 - Introduction to Quantum Computing February 01, 2022
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Singly controlled transformations (cont.) \4

Qo = T(a)R(3),

e

Carlo Segre (lllinois Tech)

Q=R(-$T(-%2), Q=T(%2)

This circuit does the following

Q 10) ® |x) — |0) ® QoQ1Q2|x)
° 1) @ [x) — [1) ® QuXQuXQ2|x)
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Singly controlled transformations (cont.)

Q@ =T(@R(5), Q=RE=T(142), Q=T(3%)

0) @ [x) —10) @ QoQ1@2x)

‘ This circuit does the following
Qo 1 ) — |1) © QXQXQ)

{a] -+ {a

Q@@ = T(a)R(5)R(—5) T(-25%) T(%*
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Singly controlled transformations (cont.) \4

Q@ =T(@R(5), Q=RE=T(142), Q=T(3%)

‘ This circuit does the following

{a] -+ {a

0) @ |x) —[0) ® QuR1Q2[x)
Qo 1) ® ) — [1) © QuXQuXQux)
Q@1 Q2 = T(a)R(5)R(—2)T(—1E2)T(2 but R(B)R(—8) = |

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19/19



Singly controlled transformations (cont.)

Q@ =T(@R(5), Q=RE=T(142), Q=T(3%)

‘ This circuit does the following

{a] -+ {a

0) @ |x) —[0) ® QuR1Q2[x)
Qo 1) ® ) — [1) © QuXQuXQux)
Q@1 Q2 = T(a)R(5)R(—2)T(—1E2)T(2 but R(B)R(—8) = |

= T(0) T(-14%)T(%5%)
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Singly controlled transformations (cont.) \4

Q@ =T(@R(5), Q=RE=T(142), Q=T(3%)

‘ This circuit does the following

{a] -+ {a

10) @ |x) — [0) © QuQQ2]x)
Qo 1)@ [x) — [1) © QuXQIXQalx)
QQ1Q2 = T(a)R(5)R(—5) T(-252) T(32 but R(B)R(—5) = I
= T(a)T(=5%)T(3) and T(a)T(v) = T(a+7)
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Singly controlled transformations (cont.) i

Q= T()R(5), Q=R-5T(-12), Q=T(32)

This circuit does the following
‘ 0) ® [x) — |0) @ Q@1 Q2[x)

{a] -+ {a

Qo 1)@ [x) — [1) © QuXQIXQalx)
QQ1Q = T(a)R(é)R( OV T(—12) T(252 but R(B)R(—f) = |
= T(a)T(-32)T(552) = T(a) T(~a) and T()T(7) = T(a+7)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing February 01, 2022 19/19



Singly controlled transformations (cont.) i

Q= T()R(5), Q=R-5T(-12), Q=T(32)

This circuit does the following
‘ 0) ® [x) — |0) @ Q@1 Q2[x)

{a] -+ {a

Qo 1)@ [x) — [1) © QuXQIXQalx)
QQ1Q = T(a)R(é)R( OV T(—12) T(252 but R(B)R(—f) = |
= T(a)T (-2 )T( DN =T(a)T(—a)=1 and T(a)T(v) = T(a+7)
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Singly controlled transformations (cont.) i

Q= T()R(5), Q=R-5T(-12), Q=T(32)

‘ This circuit does the following

{a] -+ {a

10) @ [x) — [0) ® QoQ1Q2|x)
Qo 1)@ [x) — [1) © QuXQIXQalx)
QQ1Q2 = T(a)R(5)R(—5) T(-252) T(32 but R(B)R(—p) = |
=T(a)T(— 'YT)T(“’QO‘) =T(a)T(—a) =1 and T(a)T(v) = T(a+7)

QuXQ1XQ2 = T(a)R(5)XR(—5) T(—14%)XT(52)
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Singly controlled transformations (cont.) i

Qo = T(a)R(3), R(-9)T(-1E2), Q= T(32)
This circuit does the following
i ‘ ‘ i 10) @ |x) — [0) ® Qo Q1 Qelx)
Q. Q Qo 1)@ [x) — [1) © QuXQIXQalx)
Qooloz:T(a)R(é)R( %)T( 5 T(52) but R(B)R(—B) = |
= T(a)T(- ) T(52) = T(a)T(~a) = and T(a)T(y) = T(a+7)
QUXQ1XQ2 = T(Q)R(Z)XR(—5) T(—1E4)XT(152)
= T(a)R(Z)XR(~§)XXT (- 52)XT(152)
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Singly controlled transformations (cont.) i

Qo = T()R(5), R(-DT(-3%), Q=T(52)
This circuit does the following

‘ ‘ 0) @ |x) — [0) ® QoQ1Q2|x)
1Q Q Qo[ 1)@ x) — [1) © QoXQuXQalx)
Q1 Q= T(a)R(g)R( %)T( B T(5) but R(B)R(—8) =

=T()T(-5H)T(5%) = T(@)T(~a) =1 and T(a)T(y) = T(a+7)
XQ1 X R(E)XR(—5) T (— ) XT (152

QoXQ1XQx = T()R(3)XR(—5) T(—5%)XT(15) but XR(3)X = R(5)

= T(a)R(5)XR(—5)XXT (- %XT(%
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Singly controlled transformations (cont.) i

Q= T()R(5), Q=R-5T(-12), Q=T(32)

‘ This circuit does the following

o

0) @ x) — [0) © Qo Q1 Qalx)
Q Qo 1) @ [x) — |1) © QuXQXQalx)
Qooloz:T(a)R(é)R( DT (=152 T(52) but R(B)R(—B) = |
= T(a)T(-252)T(%5%) = T(a)T(~a) =/ and T(a)T(7) = T(a +)
QXQLXQs = T(a)R(Z)XR(—4) T(~252)XT(252)

but XR(8)X = R(—8)

8 g
2 2
T(e)R(5)XR(—5)XXT (-4 XT(252) and XT(a)X = T{—0)
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Singly controlled transformations (cont.) i

)

Qo = T(«

R(5).

R(-9)T(-15%),

o

Qo1 @2 = T(a)R(g)R(— )T
=T(a)T(—

Q;

+

(e}

Qo_

_

PHYS 407 - Introduction to Quantum Computing

)T(337)
T(a)T(—a)=1

)T(=13%)XT (3%
JXXT(=152)XT (252

)

Q =T(5%)

This circuit does the following
10) ® [x) — [0) @ Qo@1Q2|x)
1) ® [x) — [1) @ QuX@1XQ2|x)

but R(B)R(—f) = |
and T(a)T(v) = T(a+7)

but XR(8)X = R(-p)
and XT(a)X = T(—«)
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Singly controlled transformations (cont.) i

Q@ =T(@R(5), Q=RE=T(142), Q=T(3%)

0) @ [x) —10) @ QoQ1@2x)

‘ This circuit does the following
Qo 1)@ %) — 1) © QXQuXQulx)

{a] -+ {a

Q@1 Q2 = T(a)R(2R(—2)T(—12)T(152) but R(B)R(—p) =
=T(a)T(—a) =1 and T(a)T(v) = T(a+7)

(@)R(5)XR(=5) T(—52)XT(232) B
 T(REGXR(-XXT(—BayxT(5e)  HROX=REH)
— T(O‘)R(g)R(g)T(%Ta)T(%) and XT(a)X = T(—Oé)
= T()R(BT(7) =
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