
Today’s outline - January 27, 2022

• Unitary transformations

• No clone theorem

• Simple gates

• Controlled gates

Reading Assignment: Chapter 5.3-5.4
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Quantum operators

All quantum operators, U, are unitary transformations which must respect the following

U|ψ⟩ = U(a1|ψ1⟩+ · · ·+ ak |ψk⟩) = a1U|ψ1⟩+ · · ·+ akU|ψk⟩

⟨Uϕ|Uψ⟩ = ⟨ϕ|U†U|ψ⟩ = ⟨ϕ|I |ψ⟩ = ⟨ϕ|ψ⟩

A unitary transformation is its own inverse (U† ≡ U−1), maps one orthonormal basis to
another orthonormal basis, is reversible, and does not change the outcome of a measurement

The product of two unitary transformations is also unitary so U1 ⊗ U2 is a unitary
transformation in the combined space X1 ⊗ X2

The general unitary operator must be able
to take the |0⟩ state to any general state on
the Bloch sphere

|ψ⟩ = cos
(
θ
2

)
|0⟩+ e iϕ sin

(
θ
2

)
|1⟩

|0⟩ =
(

1
0

)
−→ |ψ⟩ =

(
cos
(
θ
2

)
e iϕ sin

(
θ
2

) )
(

a b
c d

)(
1
0

)
=

(
cos
(
θ
2

)
e iϕ sin

(
θ
2

) )
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General unitary operator

(
a b
c d

)(
1
0

)
=

(
cos
(
θ
2

)
e iϕ sin

(
θ
2

) )

−→ a = cos
(
θ
2

)
, c = e iϕ sin

(
θ
2

)
The other two constants are determined by the property of the unitary matrix that U†U ≡ I

U†U =

(
a∗ c∗

b∗ d∗

)(
a b
c d

)
=

(
a∗a+ b∗b a∗c + b∗d
c∗a+ d∗b c∗c + d∗d

)
=

(
1 0
0 1

)
= I

Take the top two equations to solve for b and d

1 = a∗a+ b∗b = cos2
(
θ
2

)
+ |b|2

|b|2 = 1− cos2
(
θ
2

)
= sin2

(
θ
2

)
b = −e iλ sin

(
θ
2

)
0 = a∗c + b∗d = cos

(
θ
2

)
e iϕ sin

(
θ
2

)
− e−iλ sin

(
θ
2

)
d

d =
cos
(
θ
2

)
e iϕ sin

(
θ
2

)
e−iλ sin

(
θ
2

) = e iϕ+iλ cos
(
θ
2

)
where arbitrary choices for the sign and phase factor of b have been made
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Quantum gates

The general unitary operator is thus

with the three real parameters

U =

(
cos
(
θ
2

)
−e iλ sin

(
θ
2

)
e iϕ sin

(
θ
2

)
e iϕ+iλ cos

(
θ
2

) ) , 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ λ ≤ 2π

U, θ, ϕ, and λ describe all single qubit gates, with some examples being

Hadamard θ = π
2 ϕ = 0 λ = π maps |0⟩ to an equal superpo-

sition of |0⟩ and |1⟩
1√
2

(
1 1
1 1̄

)
Pauli-X θ = π ϕ = 0 λ = π a NOT, maps |0⟩ → |1⟩ and

|1⟩ → |0⟩

(
0 1
1 0

)
Phase Shift θ = 0 ϕ λ = 0 leaves |0⟩ unchanged and ro-

tates |1⟩ on Bloch sphere by ϕ

(
1 0
0 e iϕ

)
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1 0
0 e iϕ
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No clone year: 1982

©          Nature Publishing Group1982

“A single quantum cannot be cloned,” W.K. Wouters and
W.H. Zurek, Nature 299, 802 (1982).
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A recent proposal to achieve faster-than4ight communication by means of an EPR-type experimental set-up is examined. 
We demonstrate that such superluminal communication is not possible. The crucial role of the linearity of the quantum 
mechanical evolution laws in preventing causal anomalies is stressed. 

The existence, according to quantum theory, of 
correlations between spatially separated systems in 
EPR-like experiments has suggested to several authors 
the possibility of message transmission at speeds greater 
than that of light. The idea is that the correlations 
subsist between measurement results which do not 
- as in classical physics - correspond to properties 
possessed by the systems before the measurement. An 
experimenter A can therefore choose what kind of ex- 
periment to perform at system I and is thus able to in- 
fluence the probability distribution of outcomes ob- 
tained by experimenter B who is measuring on system 
II. If B were able to recognize this change in the prob- 
ability distribution he would know what kind of experi- 
ment A had decided to perform; and this transmission 
of information could be used to develop a code for 
sending messages from A to B (and vice versa). How- 
ever, it can easily be proved [1 ] that, due to the fact 
that  the operators representing two measurements 
at space-like separation commute, all expectation val- 
ues of physical quantities measured by B remain the 
same irrespective of A's decisions. Repetition of the 
experiment therefore will not provide B with any 
means to discover what A has done. The idea of com- 
munication by superluminal velocity thereby seems to 
be refuted. 

There is nevertheless a remaining possibility, recent- 
ly pointed out by Herbert [2]. The central idea here 
is to use one single experiment (and not a series of re- 
peated experiments) to transmit one unit of informa- 
tion. In order to ascertain whether or not a change in 
the probability distribution has taken place a "multi- 

0 031-9163/82/0000-0000/$02.75 © 1982 North-Holland 

plying device" is included in the experimental set-up. 
We shall discuss this idea in the context of Bohm's 
familiar version of the EPR-experiment (see ref. [2] 
for an exposition in terms of photon polarizations). 
It will be shown that the laws of quantum theory by 
virtue of their linearity, prevent such a "quantum com- 
municator" from working. 

Suppose that a compound S = 0 state decays into 
two spin 1/2 particles (electrons, say). Experimenter 
A has the choice to measure either the x-component 
or the z-component of the spin of electron I. In the 
path of electron II a "multiplying device" is position- 
ed, in such a way as to ensure that II enters the device 
a f t e r  A has performed a measurement upon I. The 
function of the "multiplying device" is to produce a 
burst of electrons all in exactly the same spin state as 
the single input electron. The large number N of elec- 
trons coming from this device are then examined by 
B, by means of a Stern-Gerlach apparatus adjusted 
to measure the x-component of the spin. There are now 
two possibilities: 

(i) A has decided to measure the x-component of 
the spin of I. Immediately after this measurement II 
can be described (as far as spin is concerned) with an 
eigenstate O f  S x ,  and therefore all the electrons emer- 
ging from the multiplier will be in this state. The 
subsequent measurement by B will then have as a 

1 _ 1 result a l l  N electrons in either the s x = ~ or s x - - 3  

channel. 
(ii) A has chosen to measure the z-component of 

the spin of I. Then the electrons emerging from the 
multiplier will be in an eigenstate o f s  z . For each of 
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“Communication by EPR devices,” D. Dieks, Phys. Lett.
92A, 271 (1982).
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum
state |a⟩ as
Similarly, it clones orthogonal states |b⟩ as
Can this operator copy a superposition, |c⟩?

U (|a⟩|0⟩) −→ |a⟩|a⟩

U (|b⟩|0⟩) −→ |b⟩|b⟩

|c⟩ = 1√
2
(|a⟩+ |b⟩)

U (|c⟩|0⟩) = 1√
2
[U (|a⟩|0⟩) + U (|b⟩|0⟩)] −→ 1√

2
(|a⟩|a⟩+ |b⟩|b⟩)

but what we really want from the copier is

U (|c⟩|0⟩) −→ |c⟩|c⟩ = 1
2 (|a⟩|a⟩+ |a⟩|b⟩+ |b⟩|a⟩+ |b⟩|b⟩)

Even if we account for the different prefactor, the output of the copier differs from the desired
result by a factor involving the mixed states of |a⟩ and |b⟩

Thus it is impossible to “clone” a general quantum state
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Common single qubit gates

The most common single qubit transformations are the Pauli transformations

and the
Hadamard gate

I = |0⟩⟨0|+ |1⟩⟨1|
(

1 0
0 1

)
I

returns the same
qubit

X = |1⟩⟨0|+ |0⟩⟨1|
(

0 1
1 0

)
X negates the qubit

Z = |0⟩⟨0| − |1⟩⟨1|
(

1 0
0 1̄

)
Z

changes phase of
qubit

Y = |0⟩⟨1| − |1⟩⟨0|
(

0 1
1̄ 0

)
Y

negate and change
phase of qubit

H = 1√
2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|) 1√

2

(
1 1
1 1̄

)
H Hadamard gate
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩

Cnot =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩

Cnot =


1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩

Cnot =


1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩

Cnot =


1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩

Cnot =


1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩

Cnot =


1 0 0 0
0 1 0 0
0 0 0 1

0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1

0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations,

however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]

= 1√
2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩]

= 1√
2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cnot) gate is
described as

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This flips the second qubit if the first qubit is |1⟩ and leaves it unchanged otherwise

Cnot |00⟩ −→ |00⟩,

Cnot |10⟩ −→ |11⟩,

Cnot |01⟩ −→ |01⟩

Cnot |11⟩ −→ |10⟩
Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Cnot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits

Cnot

[
1√
2
(|0⟩+ |1⟩)|0⟩

]
= 1√

2
[Cnot |00⟩+ Cnot |10⟩] = 1√

2
[|00⟩+ |11⟩]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9 / 13



General controlled gate

A more generalized controlled gate is one that performs a
single-qubit transformation Q on the second qubit only when
the first qubit is |1⟩

Q

this kind of gate is represented by the shorthand:∧
Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗Q and a 4× 4 matrix

∧
Q =

(
I 0
0 Q

)
the controlled phase shift gate, represented by

∧
e iθI ≡

∧
e iθ is∧

e iθ = |00⟩⟨00|+ |01⟩⟨01|+ e iθ|10⟩⟨10|+ e iθ|11⟩⟨11|

∧
e iθI : |00⟩ → |00⟩

|01⟩ → |01⟩
|10⟩ → e iθ|10⟩
|11⟩ → e iθ|11⟩



1 0 0 0
0 1 0 0
0 0 e iθ 0
0 0 0 e iθ


Note the → and not 7→, the for-
mer being a transformation in a
complex vector space while the lat-
ter works in the complex projective
space where e iθ|11⟩ ∼ |11⟩
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More about controlled gates

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

∧
e iθ
[

1√
2
(|00⟩+ |11⟩)

]
→ 1√

2
(|00⟩+ e iθ|11⟩)

Another common controlled gate is the one
which swaps the two bits of a 2-qubit state

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


|00⟩ 7→ |00⟩, |01⟩ 7→ |10⟩, |10⟩ 7→ |01⟩, |11⟩ 7→ |11⟩
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Things to remember . . .

As mentioned previously, the action of a unitary transformation is completely defined within
the complex vector space (denoted by →) while there is ambiguity (global phase) in the
complex projective space (denoted by 7→)

A controlled gate with qubits is not identical to
that of a classical computer since one can change
basis and the gate may modify both qubits

Consider a 2-qubit system in the Hadamard basis

|++⟩ = 1
2(|00⟩+ |01⟩+ |10⟩+ |11⟩)

|+−⟩ = 1
2(|00⟩ − |01⟩+ |10⟩ − |11⟩)

| −+⟩ = 1
2(|00⟩+ |01⟩ − |10⟩ − |11⟩)

| − −⟩ = 1
2(|00⟩ − |01⟩ − |10⟩+ |11⟩)

Now apply the Cnot gate: Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

Cnot : |++⟩ → 1
2(|00⟩+ |01⟩+ |11⟩+ |10⟩) = |++⟩

|+−⟩ → 1
2(|00⟩ − |01⟩+ |11⟩ − |10⟩) = | − −⟩

| −+⟩ → 1
2(|00⟩+ |01⟩ − |11⟩ − |10⟩) = | −+⟩

| − −⟩ → 1
2(|00⟩ − |01⟩ − |11⟩+ |10⟩) = |+−⟩
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Things to remember . . .

It is not even relevant to define control and target qubits since Cnot takes a separable 2-qubit
state and entangles it

Cnot
1√
2
(|0⟩+ |1⟩)|0⟩ = (|00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|) 1√

2
(|00⟩+ |10⟩)

= 1√
2
(|00⟩+ |11⟩)

Finally, it is important to work out the circuits without assuming their function

Consider the circuit with 2 Hadamard gates and a Cnot

This might seem to leave the |00⟩ state unchanged but

H H

(H ⊗ I )Cnot(H ⊗ I )|0⟩|0⟩ = (H ⊗ I )Cnot
1√
2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|)|0⟩|0⟩

= (H ⊗ I )Cnot
1√
2
(|0⟩+ |1⟩)|0⟩ = (H ⊗ I ) 1√

2
(|00⟩+ |11⟩)

= 1
2(|00⟩+ |01⟩+ |10⟩ − |11⟩)
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