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Simple gates

Controlled gates

Reading Assignment: Chapter 5.3-5.4

Homework Assignment #03:
Chapter 4:1,2,7,10,15,18
due Thursday, February 03, 2022
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Quantum operators i

All quantum operators, U, are unitary transformations which must respect the following
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Quantum operators i

All quantum operators, U, are unitary transformations which must respect the following
Ul) = U(ar|p1) + -+ + aklvw)) = arUr) + -+ - + agUlv)
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Quantum operators i

All quantum operators, U, are unitary transformations which must respect the following
Ul) = U(ar|p1) + -+ + aklvw)) = arUr) + -+ - + agUlv)
(Ug|Uy) = (U Ul)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 2/13



Quantum operators i

All quantum operators, U, are unitary transformations which must respect the following
Ul) = U(ar|p1) + -+ + aklvw)) = arUr) + -+ - + agUlv)
(U U) = (9| UTUI) = (0l119) = (#l¥)
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Quantum operators A\
All quantum operators, U, are unitary transformations which must respect the following
Ul) = Ularlvn) + -+ + albn)) = arUgn) + -+ - + a Ul
(Ug|Up) = (&|UTUL) = (9l1[w) = (o]

A unitary transformation is its own inverse (U' = U™1), maps one orthonormal basis to
another orthonormal basis, is reversible, and does not change the outcome of a measurement
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All quantum operators, U, are unitary transformations which must respect the following
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A unitary transformation is its own inverse (U' = U™1), maps one orthonormal basis to
another orthonormal basis, is reversible, and does not change the outcome of a measurement
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Quantum operators V'
All quantum operators, U, are unitary transformations which must respect the following
Ul) = Ularlvn) + -+ + albn)) = arUgn) + -+ - + a Ul
(Ug|Up) = (&|UTUL) = (9l1[w) = (o]

A unitary transformation is its own inverse (U' = U™1), maps one orthonormal basis to
another orthonormal basis, is reversible, and does not change the outcome of a measurement
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Quantum operators V'
All quantum operators, U, are unitary transformations which must respect the following
Ul) = Ularlvn) + -+ + albn)) = arUgn) + -+ - + a Ul
(Ug|Up) = (&|UTUL) = (9l1[w) = (o]

A unitary transformation is its own inverse (U' = U™1), maps one orthonormal basis to
another orthonormal basis, is reversible, and does not change the outcome of a measurement

The product of two unitary transformations is also unitary so U; ® U, is a unitary
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Quantum operators V'
All quantum operators, U, are unitary transformations which must respect the following
Ul) = Ularlvn) + -+ + albn)) = arUgn) + -+ - + a Ul
(Ug|Up) = (&|UTUL) = (9l1[w) = (o]

A unitary transformation is its own inverse (U' = U™1), maps one orthonormal basis to
another orthonormal basis, is reversible, and does not change the outcome of a measurement

The product of two unitary transformations is also unitary so U; ® U, is a unitary
transformation in the combined space X; ® Xo

. (4
The general unitary operator must be able 0) = < 1 > ) = cos (3)
to take the |0) state to any general state on e'?sin (g)

the Bloch sphere

e ()0 s o) (o) (%)
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General unitary operator YV

(28) ()= (a8
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General unitary operator YV

(2)G)- () = e
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General unitary operator Y

<i Z><é>:<e;°:£§()g)> — a=cos(4), c=¢€"sin(9)
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General unitary operator i

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |

), c= e'? sin %)

NI
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General unitary operator i

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
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General unitary operator i

(20)(0)- (o) — e
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General unitary operator i

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d

), c=e“sin(§)

NI

1=a%a+ b*b
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d

), c=e“sin(§)

NI

1=a*a+ b*b = cos? (%) + |bJ?
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d

), c=e“sin(§)

NI

1=a*a+ b*b = cos? (%) + |bJ?

b]*> =1 — cos® (§)
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d

), c=e“sin(§)

NI

1=a*a+ b*b = cos? (%) + |bJ?

|b]?2 =1 — cos? (%) = sin? (g)
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General unitary operator
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d

), c=e“sin(§)

NI

1=a%a+ b*b=cos® () +|b? 0=a"c+b*d=cos(§)e“sin(§) —esin(§)d
|b]* =1 — cos? (§) = sin® (§) g s (9) esin (%)
b= —e"sin (g) e ~iAsin (%)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 3/13



General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |
Uty — a* c* a b _ a*a+ b*b a*c+ b*d _ 10 _
b* d* c d c*a+d*b c*c+ d*d 01

Take the top two equations to solve for b and d
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General unitary operator

(20)(0)- (o) — e

The other two constants are determined by the property of the unitary matrix that UTU = |

Uty — a*t c* a b\ (aa+b'hb a'c+bd) (10 _
S\ b d* c d) \ca+db cc+dd) 0 1)

Take the top two equations to solve for b and d

NI

), c=e“sin(§)

1=a%a+ b*b=cos® () +|b? 0=a"c+b*d=cos(§)e“sin(§) —esin(§)d
[b]> =1~ cos (3) = sin”(5) g s (§) e“sin(§) O o (8
i (0 - —ixen (0 = s (3)
b= —e""sin (2) e '‘sin (5)

where arbitrary choices for the sign and phase factor of b have been made
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Quantum gates V

The general unitary operator is thus
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Quantum gates V

The general unitary operator is thus

o[
(

—e sin (g
e'? sin (

)
g) elP+iX cos 2) ’
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Quantum gates !/5’

The general unitary operator is thus with the three real parameters

o[
ei® sin (
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Quantum gates 7

The general unitary operator is thus with the three real parameters

—e sin (

cos (%)
g) ei? i) cos (8) )

9
U= SN2
e’¢sm(
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Quantum gates 72

The general unitary operator is thus with the three real parameters

U= cos (4) —esin (9) 0<p<o 0<p< e es
~\ e?sin(§) etrcos(d) ) T T T T T ESYEMm VS ASAT

U, 0, ¢, and X describe all single qubit gates, with some examples being
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Quantum gates V

The general unitary operator is thus with the three real parameters

U= cos(3)  —esin(3) 0<¢p<2r, 0<B<m O0<A<?2
~\ e?sin(§) etrcos(d) ) T T T T T TET A

U, 0, ¢, and X describe all single qubit gates, with some examples being

Hadamard 60=75 ¢=0 A=m maps |0) to an equal superpo- % <
sition of |0) and |1)
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Quantum gates

The general unitary operator is thus with the three real parameters

e'? sin (g) e/PtiX cos (%)

9 —ersin (8
U:( cos(z)  —esin(3) ) 0<¢<2r, 0<f<m O0<A<2r

U, 0, ¢, and X describe all single qubit gates, with some examples being

Hadamard 60=75 ¢=0 A=m maps |0) to an equal superpo-
sition of |0) and |1)

Pauli-X 0=m ¢=0 A=m a NOT, maps [0) — |1) and
1) = 10)
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Quantum gates

The general unitary operator is thus with the three real parameters

U= cos(3)  —esin(3) 0<¢p<2r, 0<B<m O0<A<?2
~\ e?sin(§) etrcos(d) ) T T T T T TET A

U, 0, ¢, and X describe all single qubit gates, with some examples being

Hadamard 60=75 ¢=0 A=m maps |0) to an equal superpo- % <
sition of |0) and |1)

Pauli-X 0=m ¢=0 A=m a NOT, maps [0) — |1) and <0 L )
10
1) = 10)
Phase Shift =0 o) A =0 leaves |0) unchanged and ro- < (1) 2,-)

tates |1) on Bloch sphere by ¢
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No clone theorem i

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum
state |a) as
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum
°P PIET P a U(la)|0)) — [a)[a)
state |a) as
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No clone theorem V'
If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum
°P PIET P a U(la)|0)) — [a)[a)
state |a) as

Similarly, it clones orthogonal states |b) as
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No clone theorem V

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum

V) 0)) —
state |a) as (12)[0)) — [a)[a)
Similarly, it clones orthogonal states |b) as U([6)[0)) — |b)|b)
Carlo Segre (lllinois Tech)
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No clone theorem V

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum U
state |a) as

a
Similarly, it clones orthogonal states |b) as U(]b)[0)) — [b)[b)

Can this operator copy a superposition, |c)?
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No clone theorem V

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum

V) 0)) —
state |a) as (1a)|0)) — la)a)
Similarly, it clones orthogonal states |b) as U([6)[0)) — |b)|b)
Can this operator copy a superposition, |c)? lc) = %(m + | b))
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum

V) 0)) —
state |a) as (1a)|0)) — la)a)
Similarly, it clones orthogonal states |b) as U([6)[0)) — |b)|b)
Can this operator copy a superposition, |c)? lc) = %(m + | b))

U(le)[0)) = J5 [U (12)[0)) + U (Ib)[0))]
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum

0
state |a) as U(la)|0)) — [a)]a)
Similarly, it clones orthogonal states |b) as U([6)[0)) — |b)|b)
Can this operator copy a superposition, |c)? |c) = %(] a) + |b))

o
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Z )1b)
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum

0
state |a) as U(la)|0)) — [a)]a)
Similarly, it clones orthogonal states |b) as U([6)[0)) — |b)|b)
Can this operator copy a superposition, |c)? |c) = %(] a) + |b))

o

U(le)0)) = 5 [U(1a)]0)) + U (I)I0)]  — 5 (la)]a) + |

but what we really want from the copier is
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum U (12)[0)) — |a)]a)
state |a) as
|

Similarly, it clones orthogonal states |b) as U(]b)[0)) — [b)[b)

Can this operator copy a superposition, |c)? lc) = %(y a) + |b))
U(le)l0)) = 5 [U(1a)]0)) + U (|6)[0))] — 5 (Ia)la) + [b)]b))
but what we really want from the copier is
U([e)[0)) — le)le) = 5 (la)]a) +[a)[b) + [b)|a) + |b)|b))

Even if we account for the different prefactor, the output of the copier differs from the desired
result by a factor involving the mixed states of |a) and |b)

o
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No clone theorem

If it possible to make a quantum “copier” then it is possible to devise a scheme for
superluminal information transmission.

Suppose that copier operator, U, acts as on quantum U (12)[0)) — |a)]a)
state |a) as
|

Similarly, it clones orthogonal states |b) as U(]b)[0)) — [b)[b)

Can this operator copy a superposition, |c)? lc) = %(y a) + |b))
U(le)l0)) = 5 [U(1a)]0)) + U (|6)[0))] — 5 (Ia)la) + [b)]b))
but what we really want from the copier is
U([e)[0)) — le)le) = 5 (la)]a) +[a)[b) + [b)|a) + |b)|b))

Even if we account for the different prefactor, the output of the copier differs from the desired
result by a factor involving the mixed states of |a) and |b)

o

Thus it is impossible to “clone” a general quantum state

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 6/13



Common single qubit gates Y

The most common single qubit transformations are the Pauli transformations
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Common single qubit gates

The most common single qubit transformations are the Pauli transformations and the
Hadamard gate

10 returns the same
| =10)(0 1)(1 — —
00/ + 1)1 (o) {1} =
01
X = [1){0] +[0)(1] < 1 0 > X r negates the qubit
Z = [0)(0] — |1)(1 < 1 (_) ) 1zL changes phase of
01 qubit
0 1 negate and change
Y =10)(1| —[1)(0 5 — =
0Ll = 110l < 1 0> Y phase of qubit
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Common single qubit gates

The most common single qubit transformations are the Pauli transformations and the
Hadamard gate

10 returns the same
| =10)(0 1)(1 — —
00/ + 1)1 (o) {1} =
01
X = [1){0] +[0)(1] < 1 0 > X r negates the qubit
Z = [0)(0] — |1)(1 < 1 (_) ) 1zL changes phase of
01 qubit
0 1 negate and change
Y =10)(1| —[1)(0 5 — =
0Ll = 110l < 1 0> Y phase of qubit

!
Ry
T

H = 3(10)(0] + [1)(0] + [0)(1] — [1) 1) %(1%) Hadamard gate
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The Hadamard gate

The Hadamard gate is particularly important

\4
as it transforms pure single qubit states into H = %(’0><O| + [1)(0] + [0) (1] — [1)(1])
even superpositions
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The Hadamard gate

\4
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The Hadamard gate

\4
The Hadamard gate is particularly important .
as it transforms pure single qubit states into H = \7§(IO><O| + [1)(0] + [0) (1] — [1)(1])
even superpositions
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The Hadamard gate

\4
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The Hadamard gate

The Hadamard gate is particularly important

as it transforms pure single qubit states into
even superpositions

HI0) = 15(10)(0] +[1)(0] + [0){1] —
= 300 + 1) = |+)

H|1) = 5(10){0] + [1)(0] + [0)(1] — [1){1])1) =
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The Hadamard gate

The Hadamard gate is particularly important

as it transforms pure single qubit states into
even superpositions

HI10) = L5(10)(0] + 1) 0] + [0)(1] — [1){1])[0) =
= 300 + 1) = |+)

HIL) = J5(10)(0] +[1)(0] + [0)(1] - [1){1[1) =
= 30 - 1)
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The Hadamard gate

The Hadamard gate is particularly important

as it transforms pure single qubit states into
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The Hadamard gate

The Hadamard gate is particularly important

as it transforms pure single qubit states into
even superpositions

HI0) = 15(10)(0] +[1)(0] + [0){1] —
3(0) + 1) = +)

H|1)

%\

75(10)(0] -+ [1)(0] + [0)(1] —
50— 1) =1-)

the Hadamard gate is its own inverse

[DANL) =

%\
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The Hadamard gate

The Hadamard gate is particularly important

as it transforms pure single qubit states into
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H|1)
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L (HI0) + HI1)
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The Hadamard gate

The Hadamard gate is particularly important
as it transforms pure single qubit states into
even superpositions

H|0) =

2(0)(0] + [1)(0] + [0)(1] — [1)(1))[0) =
= 300 + 1) = |+)
HIL) = J5(10)(0] +[1)(0] + [0)(1] - [1){1[1) =
= 300 - 1) = |-)

the Hadamard gate is its own inverse

HH|0) = H5(10) + 1)) = J5(HI0) + HI1)) =
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The Hadamard gate

A\
The Hadamard gate is particularly important

as it transforms pure single qubit states into H = %(’0><O| + [1)(0] + [0) (1] — [1)(1])
even superpositions

H|0) = J5(10)(0] + [1){0] + [0)(1] — [1){1])|0) =

25(10)(0/0) + 1){0]0) + 0) 0™ 130T
55(10) + 1)) = [+)

H|1)

%\

75(10)(0 -+ [1)(0] + [0)(1] — [1)(1)[1) =
50— 1) =1-)

the Hadamard gate is its own inverse
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(10) 047"+ [1)(0f5™ [0)(L[1) — [1)(1[1))
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The Hadamard gate Y
The Hadamard gate is particularly important

as it transforms pure single qubit states into H = %(’0><O| + [1)(0] + [0) (1] — [1)(1])
even superpositions

H|0) = J5(10)(0] + [1){0] + [0)(1] — [1){1])|0) =

25(10)(0/0) + 1){0]0) + 0) 0™ 130T
55(10) + 1)) = [+)

%\
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The Hadamard gate Y
The Hadamard gate is particularly important

as it transforms pure single qubit states into H = %(’0><O| + [1)(0] + [0) (1] — [1)(1])
even superpositions

H|0) = J5(10)(0] + [1){0] + [0)(1] — [1){1])|0) =

25(10)(0/0) + 1){0]0) + 0) 0™ 130T
55(10) + 1)) = [+)

%\

H|1) = 5(10){0] + [1)(0] + [0)(1] — [1){1])1) =

75(10) = 11)) = |-)
the Hadamard gate is its own inverse

HH|0) = H-15(10) + 1)) = J5(HI0) + HI1)) = 5 [ 5(10) + ) + 5(10) - )] = 110)
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The Hadamard gate

\4
The Hadamard gate is particularly important .
as it transforms pure single qubit states into H = \7§(IO><O| + [1)(0] + [0) (1] — [1)(1])
even superpositions

H10) = £5((0)(0] + [1)(0] + [0) (1] — [1){1D]0) = 5(10)(010} -+ [1)(0[0) + [0) (16T [1)(346T
1(0) + 1) = [+)

H|1)

%\

75(10)(0 -+ [1)(0] + [0)(1] — [1)(1)[1) =
50— 1) =1-)

the Hadamard gate is its own inverse
HH|0) = H35(10) + 1)) = J5(HI0) + HI1) = J5 [ 35(10) + 1) + 3510 - J0)] = 110}

L(H|0) — HI1)) = 7[12(|o>+|1>)
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The Hadamard gate

v
The Hadamard gate is particularly important

as it transforms pure single qubit states into H =
even superpositions

Z5(10)(0] + [1)(0] + [0)(1] — [1)(1])

H10) = £5((0)(0] + [1)(0] + [0) (1] — [1){1D]0) = 5(10)(010} -+ [1)(0[0) + [0) (16T [1)(346T
= 2(10) + 1) = [+)
HI1) = L

(10)COf + [1)(0 + [0) (L[ = [1){IN)I1) =
50— 1) =1-)

the Hadamard gate is its own inverse

HH|0) = H-15(10) + 1)) = J5(HI0) + HI1)) = 5 [ 5(10) + ) + 5(10) - )] = 110)
L(HI0) — HIL) = L5 | (007 + (1)) - M—m)}
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The Hadamard gate

v
The Hadamard gate is particularly important

as it transforms pure single qubit states into H =
even superpositions

Z5(10)(0] + [1)(0] + [0)(1] — [1)(1])

H10) = £5((0)(0] + [1)(0] + [0) (1] — [1){1D]0) = 5(10)(010} -+ [1)(0[0) + [0) (16T [1)(346T
= 2(10) + 1) = [+)
HI1) = L

(10)COf + [1)(0 + [0) (L[ = [1){IN)I1) =
50— 1) =1-)

the Hadamard gate is its own inverse
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Controlled-NOT gate V

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement
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The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system
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Controlled-NOT gate 7
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Controlled-NOT gate VY
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described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as
This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the

entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]

described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
1000

Cpot|00) — |00), Chot|01) — [01) 0100

not —
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise

Crot|00) — [00). Crot|01) — |01)

not —

1
0
0

o = O
o O O

0
0
1
Cnot‘10> — ’11>,

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 9/13



Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
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not —
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
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Chot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations,
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
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The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise

1000

Cnot‘00> — |OO>, Cnot’01> — |01> 0100
not —

0 001

Cnot‘10> — ’11>, Cnot’11> — ’10> O 0 1 O

Chot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise

1000
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise
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Controlled-NOT gate

Multiple qubit gates can be constructed as tensor products of single qubit gates but they
cannot affect entanglement

The most interesting multiple qubit transformations (gates) are those which change the
entanglement of the system

The controlled-NOT (Cot) gate is Crot = |00)(00| 4 01)(01| + |11)(10| + |10)(11]
described as

This flips the second qubit if the first qubit is |1) and leaves it unchanged otherwise

1000
Cpot|00) —> |00), Chot[01) — [01) 0100 —
not —
000 1
Crot|10) — [11), Cot|11) — [10) 00 10 —*—

Chot is unitary, its own inverse and cannot be decomposed into a product of two single-qubit
transformations, however it can change the entanglement between two qubits
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General controlled gate

A more generalized controlled gate is one that performs a

single-qubit transformation Q on the second qubit only when
the first qubit is |1)
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General controlled gate

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when
the first qubit is |1) 1Q

this kind of gate is represented by the shorthand:
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix
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General controlled gate vV

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
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the controlled phase shift gate, represented by A e/ = A e is
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General controlled gate A\

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q

the controlled phase shift gate, represented by A e/ = A e/ is
/\ & = 100)(00| + 01)(01| + €™[10)(10] + e™|11)(11]
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General controlled gate A\
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General controlled gate A\

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q

the controlled phase shift gate, represented by A e/ = A e/ is
/\ & = 100)(00| + 01)(01| + €™[10)(10] + e™|11)(11]

Ael: |00) —  |00) 1 0 0 0
01) —  |o1)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing January 27, 2022 10/13



General controlled gate A\

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q
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General controlled gate A\

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q

the controlled phase shift gate, represented by A e/ = A e is
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General controlled gate A\

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q

the controlled phase shift gate, represented by A e/ = A e/ is
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General controlled gate \ i

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q

the controlled phase shift gate, represented by A e/ = A e is

/\ & = 100)(00| + 01)(01| + €™[10)(10] + e™|11)(11]

Ael: [00) —  [00) 1 0 0 0
01) —  |o1) 01 0 0
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General controlled gate \ i

A more generalized controlled gate is one that performs a T
single-qubit transformation Q on the second qubit only when

the first qubit is |1) 1Q
this kind of gate is represented by the shorthand: | 0
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0 Q

the controlled phase shift gate, represented by A e/ = A e is

/\ & = 100)(00| + 01)(01| + €™[10)(10] + e™|11)(11]

Ael: |00) —  ]00) 1 0 0 O
01) —  |o1) 01 0 0
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General controlled gate

single-qubit transformation Q on the second qubit only when

A more generalized controlled gate is one that performs a Hri
the first qubit is |1) Q

this kind of gate is represented by the shorthand: /
AQ=10)0]®/+|1)(1|® Q and a 4 x 4 matrix /\Q: 0

the controlled phase shift gate, represented by A e/ = A e is
/\ & = 100)(00| + 01)(01| + €™[10)(10] + e™|11)(11]

Note the — and not —, the for-

0 .
Ae”l: 100) — |00) 10 0 0 mer being a transformation in a
01) — '_6‘01> 0 1 (?6 0 complex vector space while the lat-
10) — e |10) 0 0 e 0 ter works in the complex projective
11) — e?|11) 0 0 0 e

space where e/?|11) ~ |11)
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More about controlled gates V

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition
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More about controlled gates V

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
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More about controlled gates V
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More about controlled gates \d

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one
which swaps the two bits of a 2-qubit state
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More about controlled gates Y
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More about controlled gates V

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one
which swaps the two bits of a 2-qubit state =
1 000
0100
0 001
0010
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More about controlled gates V

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one _
which swaps the two bits of a 2-qubit state -
1 000 1 000
0100 0 001
0 001 0 010
0010 0100
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More about controlled gates YV

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one _
which swaps the two bits of a 2-qubit state -
1 000 1 000 1 000
0100 0 001 0100
0 001 0 010 0 0 01
0010 0100 0010
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More about controlled gates YV

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one _
which swaps the two bits of a 2-qubit state -
1 000 1 0 0O 1 000 1 000
01 00 0 001 01 00 _
0 001 0 01O 0 0 01 o
0 010 0100 0 01O
00) — [00),
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More about controlled gates YV

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one _
which swaps the two bits of a 2-qubit state -
1 000 1 000 1 000 1 000
0100 0 001 0100 10010
0 001 0 010 0 0 01 o
0010 0100 0010

|00) — |00), |01) — |10),
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More about controlled gates YV

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one _

which swaps the two bits of a 2-qubit state -
1 000 1 000 1 000 1 000
0100 0 001 0100 10010
0 001 0 010 0 0 01 10100
0010 0100 0010

|00) — |00), |01) — |10), |10) — |01),
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More about controlled gates YV

Applying a phase shift to a single qubit is meaningless since global phase shifts can be factored
out however, as part of a conditional transformation, this gate is gate is non-trivial as it
changes the relative phase of the elements of a superposition

A e [ 25000y + [11)] = £5(100) + e”[11))

Another common controlled gate is the one _
which swaps the two bits of a 2-qubit state -
1 000 1 000 1 000 1 000
0100 0 001 0100 10010
0 001 0 010 0 0 01 10100
0010 0100 0010 0 001

00) = 00),  [01) — [10), |10} > [01),  |11) s |11)
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Things to remember . ..

A\

As mentioned previously, the action of a unitary transformation is completely defined within

the complex vector space (denoted by —) while there is ambiguity (global phase) in the
complex projective space (denoted by —)
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Things to remember . .. 7

As mentioned previously, the action of a unitary transformation is completely defined within

the complex vector space (denoted by —) while there is ambiguity (global phase) in the
complex projective space (denoted by —)

A controlled gate with qubits is not identical to
that of a classical computer since one can change
basis and the gate may modify both qubits
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Things to remember . .. V

As mentioned previously, the action of a unitary transformation is completely defined within
the complex vector space (denoted by —) while there is ambiguity (global phase) in the
complex projective space (denoted by —)

A controlled gate with qubits is not identical to
that of a classical computer since one can change
basis and the gate may modify both qubits

Consider a 2-qubit system in the Hadamard basis
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Things to remember . .. V
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