

Today's outline - January 20, 2022

Today's outline - January 20, 2022

- Outer products

Today's outline - January 20, 2022

- Outer products
- Linear transformations

Today's outline - January 20, 2022

- Outer products
- Linear transformations
- Projection operators

Today's outline - January 20, 2022

- Outer products
- Linear transformations
- Projection operators
- Qubit measurement revisited

Today's outline - January 20, 2022

- Outer products
- Linear transformations
- Projection operators
- Qubit measurement revisited

Reading Assignment: Chapter 4.3-4.4

Today's outline - January 20, 2022

- Outer products
- Linear transformations
- Projection operators
- Qubit measurement revisited

Reading Assignment: Chapter 4.3-4.4

Homework Assignment #02:

Chapter 3:1,4,8,10,14,15

due Thursday, January 27, 2022

Today's outline - January 20, 2022

- Outer products
- Linear transformations
- Projection operators
- Qubit measurement revisited

Reading Assignment: Chapter 4.3-4.4

Homework Assignment #02:
Chapter 3:1,4,8,10,14,15
due Thursday, January 27, 2022

Homework Assignment #03:
Chapter 4:1,2,7,10,15,18
due Thursday, February 03, 2022

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

$$(|a\rangle\langle b|)|c\rangle = |a\rangle(\langle b|c\rangle)$$

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

$$(|a\rangle\langle b|)|c\rangle = |a\rangle(\langle b|c\rangle) = (\langle b|c\rangle)|a\rangle$$

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

$$(|a\rangle\langle b|)|c\rangle = |a\rangle(\langle b|c\rangle) = (\langle b|c\rangle)|a\rangle$$

The outer product is a matrix operator which acts on a vector and transforms it into a new vector

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

$$(|a\rangle\langle b|)|c\rangle = |a\rangle(\langle b|c\rangle) = (\langle b|c\rangle)|a\rangle$$

The outer product is a matrix operator which acts on a vector and transforms it into a new vector

One example is the projection operator, for a vector space V associated with a single qubit system, an example of a projection operator is $|0\rangle\langle 0|$ with respect to $\{|0\rangle, |1\rangle\}$

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

$$(|a\rangle\langle b|)|c\rangle = |a\rangle(\langle b|c\rangle) = (\langle b|c\rangle)|a\rangle$$

The outer product is a matrix operator which acts on a vector and transforms it into a new vector

One example is the projection operator, for a vector space V associated with a single qubit system, an example of a projection operator is $|0\rangle\langle 0|$ with respect to $\{|0\rangle, |1\rangle\}$

$$|0\rangle\langle 0| = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}$$

Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which operate on vectors

Given two vectors $|a\rangle$ and $|b\rangle$, their inner product, defined as $\langle a|b\rangle$ is a scalar quantity

Their outer product, $|a\rangle\langle b|$ however, is an operator which has the property

$$(|a\rangle\langle b|)|c\rangle = |a\rangle(\langle b|c\rangle) = (\langle b|c\rangle)|a\rangle$$

The outer product is a matrix operator which acts on a vector and transforms it into a new vector

One example is the projection operator, for a vector space V associated with a single qubit system, an example of a projection operator is $|0\rangle\langle 0|$ with respect to $\{|0\rangle, |1\rangle\}$

$$|0\rangle\langle 0| = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

The four simple transformations in this 2-dimensional space are thus

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

The four simple transformations in this 2-dimensional space are thus

$$|0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad |0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

The four simple transformations in this 2-dimensional space are thus

$$|0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad |0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad |1\rangle\langle 0| = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

The four simple transformations in this 2-dimensional space are thus

$$|0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad |0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad |1\rangle\langle 0| = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

The four simple transformations in this 2-dimensional space are thus

$$|0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad |0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad |1\rangle\langle 0| = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

A general transformation in this space can be easily written as

Linear transformations

Another example of a linear transformation on the same space is $|0\rangle\langle 1|$ which maps $|1\rangle$ to $|0\rangle$ and $|0\rangle$ to the null vector

$$|0\rangle\langle 1| |1\rangle = |0\rangle \langle 1|1\rangle = |0\rangle \mathbf{1} = |0\rangle$$

$$|0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$|0\rangle\langle 1| |0\rangle = |0\rangle \langle 1|0\rangle = |0\rangle \mathbf{0} = \mathbf{0}$$

The four simple transformations in this 2-dimensional space are thus

$$|0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad |0\rangle\langle 1| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad |1\rangle\langle 0| = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

A general transformation in this space can be easily written as

$$a|0\rangle\langle 0| + b|0\rangle\langle 1| + c|1\rangle\langle 0| + d|1\rangle\langle 1| = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is

$$X = |0\rangle\langle 1| + |1\rangle\langle 0|$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

This will be a 4×4 matrix and the corresponding outer products are

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

This will be a 4×4 matrix and the corresponding outer products are

$$= \begin{pmatrix} & & & \end{pmatrix}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

This will be a 4×4 matrix and the corresponding outer products are

$$|00\rangle\langle 10| = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

This will be a 4×4 matrix and the corresponding outer products are

$$|00\rangle\langle 10| + |01\rangle\langle 01| = \begin{pmatrix} 0 & 0 & \color{red}{1} & 0 \\ 0 & \color{green}{1} & 0 & 0 \end{pmatrix}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

This will be a 4×4 matrix and the corresponding outer products are

$$|00\rangle\langle 10| + |01\rangle\langle 01| + |10\rangle\langle 00| = \begin{pmatrix} 0 & 0 & \color{red}{1} & 0 \\ 0 & \color{green}{1} & 0 & 0 \\ \color{blue}{1} & 0 & 0 & 0 \end{pmatrix}$$

Examples of linear transformations

A linear transformation, X , that swaps $|0\rangle$ and $|1\rangle$ is with an alternative notation being

$$X = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X : \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

In a 2-qubit system, what is the transformation that exchanges $|00\rangle$ and $|10\rangle$ but does not disturb the rest?

This will be a 4×4 matrix and the corresponding outer products are

$$|00\rangle\langle 10| + |01\rangle\langle 01| + |10\rangle\langle 00| + |11\rangle\langle 11| = \begin{pmatrix} 0 & 0 & \color{red}{1} & 0 \\ 0 & \color{green}{1} & 0 & 0 \\ \color{blue}{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \color{orange}{1} \end{pmatrix}$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle = a_{mn}$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle = a_{mn}$$

the result of applying this operator to a vector $|\psi\rangle = \sum_k b_k |k\rangle$ can be worked out

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle = a_{mn}$$

the result of applying this operator to a vector $|\psi\rangle = \sum_k b_k |k\rangle$ can be worked out

$$O|\psi\rangle = \left(\sum_i \sum_j a_{ij} |i\rangle\langle j| \right) \left(\sum_k b_k |k\rangle \right)$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle = a_{mn}$$

the result of applying this operator to a vector $|\psi\rangle = \sum_k b_k |k\rangle$ can be worked out

$$O|\psi\rangle = \left(\sum_i \sum_j a_{ij} |i\rangle\langle j| \right) \left(\sum_k b_k |k\rangle \right) = \sum_i \sum_j \sum_k a_{ij} b_k |i\rangle\langle j| k\rangle$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle = a_{mn}$$

the result of applying this operator to a vector $|\psi\rangle = \sum_k b_k |k\rangle$ can be worked out

$$O|\psi\rangle = \left(\sum_i \sum_j a_{ij} |i\rangle\langle j| \right) \left(\sum_k b_k |k\rangle \right) = \sum_i \sum_j \sum_k a_{ij} b_k |i\rangle\langle j| k\rangle = \sum_i \sum_j a_{ij} b_j |i\rangle$$

Operator formalism

It is evident that an operator in an n -qubit system which maps $|j\rangle \mapsto |i\rangle$ and leaves all the others the same in the standard basis is $O = |i\rangle\langle j|$

a general operator with entries a_{ij} is

$$O = \sum_i \sum_j a_{ij} |i\rangle\langle j|$$

taking the expectation value of the operator, will pick out a specific coefficient

$$\langle m|O|n\rangle = \langle m| \sum_i \sum_j a_{ij} |i\rangle\langle j| n\rangle = \langle m| \sum_i a_{in} |i\rangle = a_{mn}$$

the result of applying this operator to a vector $|\psi\rangle = \sum_k b_k |k\rangle$ can be worked out

$$O|\psi\rangle = \left(\sum_i \sum_j a_{ij} |i\rangle\langle j| \right) \left(\sum_k b_k |k\rangle \right) = \sum_i \sum_j \sum_k a_{ij} b_k |i\rangle\langle j| k\rangle = \sum_i \sum_j a_{ij} b_j |i\rangle$$

the operator can be written in the same way for any basis $\{|\beta_i\rangle\}$ as $O = \sum_i \sum_j b_{ij} |\beta_i\rangle\langle \beta_j|$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s}_1 + \vec{s}_2$ where $\vec{s}_1 \in S$ and $\vec{s}_2 \in S^\perp$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s_1} + \vec{s_2}$ where $\vec{s_1} \in S$ and $\vec{s_2} \in S^\perp$

For any subspace S , the projection operator P_S is the linear operator $P_S : V \rightarrow S$ that sends $|v\rangle \mapsto \vec{s_1}$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s_1} + \vec{s_2}$ where $\vec{s_1} \in S$ and $\vec{s_2} \in S^\perp$

For any subspace S , the projection operator P_S is the linear operator $P_S : V \rightarrow S$ that sends $|v\rangle \mapsto \vec{s_1}$

To generalize, for any direct sum decomposition of $V = S_1 \oplus \cdots \oplus S_k$ into k orthogonal subspaces, there are k related projection operators $P_i : V \rightarrow S_i$ such that

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s_1} + \vec{s_2}$ where $\vec{s_1} \in S$ and $\vec{s_2} \in S^\perp$

For any subspace S , the projection operator P_S is the linear operator $P_S : V \rightarrow S$ that sends $|v\rangle \mapsto \vec{s_1}$

To generalize, for any direct sum decomposition of $V = S_1 \oplus \cdots \oplus S_k$ into k orthogonal subspaces, there are k related projection operators $P_i : V \rightarrow S_i$ such that

$$P_i|v\rangle = \vec{s_i}, \quad |v\rangle = \vec{s_1} + \cdots + \vec{s_k}, \quad s_i \in S_i$$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s_1} + \vec{s_2}$ where $\vec{s_1} \in S$ and $\vec{s_2} \in S^\perp$

For any subspace S , the projection operator P_S is the linear operator $P_S : V \rightarrow S$ that sends $|v\rangle \mapsto \vec{s_1}$

To generalize, for any direct sum decomposition of $V = S_1 \oplus \cdots \oplus S_k$ into k orthogonal subspaces, there are k related projection operators $P_i : V \rightarrow S_i$ such that

$$P_i|v\rangle = \vec{s_i}, \quad |v\rangle = \vec{s_1} + \cdots + \vec{s_k}, \quad s_i \in S_i$$

The state, $\vec{s_i}$, resulting from the projection operator P_i applied to a state $|\psi\rangle$ is not necessarily normalized so a detector, with associated decomposition $V = S \oplus S^\perp$ is applied to $|\psi\rangle$ must produce a normalized state $|\phi\rangle$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s_1} + \vec{s_2}$ where $\vec{s_1} \in S$ and $\vec{s_2} \in S^\perp$

For any subspace S , the projection operator P_S is the linear operator $P_S : V \rightarrow S$ that sends $|v\rangle \mapsto \vec{s_1}$

To generalize, for any direct sum decomposition of $V = S_1 \oplus \cdots \oplus S_k$ into k orthogonal subspaces, there are k related projection operators $P_i : V \rightarrow S_i$ such that

$$P_i|v\rangle = \vec{s_i}, \quad |v\rangle = \vec{s_1} + \cdots + \vec{s_k}, \quad s_i \in S_i$$

The state, $\vec{s_i}$, resulting from the projection operator P_i applied to a state $|\psi\rangle$ is not necessarily normalized so a detector, with associated decomposition $V = S \oplus S^\perp$ is applied to $|\psi\rangle$ must produce a normalized state $|\phi\rangle$

$$P_i|\psi\rangle = c_i|\phi\rangle$$

Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S^\perp such that $V = S \oplus S^\perp$

Any vector $|v\rangle \in V$ can be written as $|v\rangle = \vec{s_1} + \vec{s_2}$ where $\vec{s_1} \in S$ and $\vec{s_2} \in S^\perp$

For any subspace S , the projection operator P_S is the linear operator $P_S : V \rightarrow S$ that sends $|v\rangle \mapsto \vec{s_1}$

To generalize, for any direct sum decomposition of $V = S_1 \oplus \cdots \oplus S_k$ into k orthogonal subspaces, there are k related projection operators $P_i : V \rightarrow S_i$ such that

$$P_i|v\rangle = \vec{s_i}, \quad |v\rangle = \vec{s_1} + \cdots + \vec{s_k}, \quad s_i \in S_i$$

The state, $\vec{s_i}$, resulting from the projection operator P_i applied to a state $|\psi\rangle$ is not necessarily normalized so a detector, with associated decomposition $V = S \oplus S^\perp$ is applied to $|\psi\rangle$ must produce a normalized state $|\phi\rangle$

$$P_i|\psi\rangle = c_i|\phi\rangle \quad \rightarrow \quad |\phi\rangle = P_i|\psi\rangle / |P_i|\psi\rangle|$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\langle 0|0\rangle|0\rangle + b\langle 0|1\rangle|0\rangle$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}|0\rangle^1 + b\cancel{\langle 0|1\rangle}|0\rangle^0$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\langle 10|00\rangle + a_{01}|10\rangle\langle 10|01\rangle + a_{10}|10\rangle\langle 10|10\rangle + a_{11}|10\rangle\langle 10|11\rangle$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{}$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{=} a_{10}|10\rangle$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{=} a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{=} a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

$$P_S = \sum_{i=0}^{k-1} |\alpha_i\rangle\langle\alpha_i|$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{|0\rangle} + a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{|1\rangle} + a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{|0\rangle} + a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{|1\rangle} = a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

$$P_S = \sum_{i=0}^{k-1} |\alpha_i\rangle\langle\alpha_i| = |\alpha_0\rangle\langle\alpha_0| + \dots + |\alpha_{k-1}\rangle\langle\alpha_{k-1}|$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{=} a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

$$P_S = \sum_{i=0}^{k-1} |\alpha_i\rangle\langle\alpha_i| = |\alpha_0\rangle\langle\alpha_0| + \dots + |\alpha_{k-1}\rangle\langle\alpha_{k-1}|$$

If $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$ and S is a subspace spanned by $|00\rangle, |01\rangle$ then

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{=} a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

$$P_S = \sum_{i=0}^{k-1} |\alpha_i\rangle\langle\alpha_i| = |\alpha_0\rangle\langle\alpha_0| + \dots + |\alpha_{k-1}\rangle\langle\alpha_{k-1}|$$

If $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$ and S is a subspace spanned by $|00\rangle, |01\rangle$ then

$$P_S = |00\rangle\langle 00| + |01\rangle\langle 01|$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{|0\rangle} + a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{|1\rangle} + a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{|0\rangle} + a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{|1\rangle} = a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

$$P_S = \sum_{i=0}^{k-1} |\alpha_i\rangle\langle\alpha_i| = |\alpha_0\rangle\langle\alpha_0| + \dots + |\alpha_{k-1}\rangle\langle\alpha_{k-1}|$$

If $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$ and S is a subspace spanned by $|00\rangle, |01\rangle$ then

$$P_S = |00\rangle\langle 00| + |01\rangle\langle 01| \quad \rightarrow \quad P_S|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle,$$

Projector examples

Given a single qubit state

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

apply the projector $|0\rangle\langle 0|$

$$|0\rangle\langle 0|\psi\rangle = a\cancel{\langle 0|0\rangle}\overset{1}{|0\rangle} + b\cancel{\langle 0|1\rangle}\overset{0}{|0\rangle} = a|0\rangle$$

Given a 2-qubit state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, apply the projector $|10\rangle\langle 10|$

$$|10\rangle\langle 10|\phi\rangle = a_{00}|10\rangle\cancel{\langle 10|00\rangle}\overset{0}{+} a_{01}|10\rangle\cancel{\langle 10|01\rangle}\overset{0}{+} a_{10}|10\rangle\cancel{\langle 10|10\rangle}\overset{1}{+} a_{11}|10\rangle\cancel{\langle 10|11\rangle}\overset{0}{=} a_{10}|10\rangle$$

If P_S is a projector from an n -dimensional vector space V onto an k -dimensional subspace S with basis $\{|\alpha_0\rangle, \dots, |\alpha_{k-1}\rangle\}$ then

$$P_S = \sum_{i=0}^{k-1} |\alpha_i\rangle\langle\alpha_i| = |\alpha_0\rangle\langle\alpha_0| + \dots + |\alpha_{k-1}\rangle\langle\alpha_{k-1}|$$

If $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$ and S is a subspace spanned by $|00\rangle, |01\rangle$ then

$$P_S = |00\rangle\langle 00| + |01\rangle\langle 01| \quad \rightarrow \quad P_S|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle, \quad |P_S|\psi\rangle|^2 \neq 1$$

Adjoint operators

if operator O acts on spaces V and W as

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

Adjoint operators

if operator O acts on spaces V and W as
its adjoint, O^\dagger acts as

$$O : W \rightarrow V$$

Adjoint operators

if operator O acts on spaces V and W as
its adjoint, O^\dagger acts as

$$O : W \rightarrow V$$

$$O^\dagger : V \rightarrow W$$

Adjoint operators

if operator O acts on spaces V and W as
its adjoint, O^\dagger acts as and is defined by

$$O : W \rightarrow V$$

$$O^\dagger : V \rightarrow W$$

Adjoint operators

if operator O acts on spaces V and W as
its adjoint, O^\dagger acts as and is defined by

$$O : W \rightarrow V$$

$$O^\dagger : V \rightarrow W$$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

Adjoint operators

if operator O acts on spaces V and W as
its adjoint, O^\dagger acts as and is defined by
where $\vec{v} \in V$ and $\vec{w} \in W$

$$O : W \rightarrow V$$

$$O^\dagger : V \rightarrow W$$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

Adjoint operators

if operator O acts on spaces V and W as

its adjoint, O^\dagger acts as and is defined by

where $\vec{v} \in V$ and $\vec{w} \in W$

In terms of matrices, O^\dagger is the conjugate transpose of O

$$O : W \rightarrow V$$

$$O^\dagger : V \rightarrow W$$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x \rangle)^\dagger$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x \rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O)$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

$$PP|v\rangle = P(P|v\rangle)$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

$$PP|v\rangle = P(P|v\rangle) = P(|\alpha\rangle\langle\alpha|v\rangle)$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

$$PP|v\rangle = P(P|v\rangle) = P(|\alpha\rangle\langle\alpha|v\rangle) = (P|\alpha\rangle)\langle\alpha|v\rangle$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

$$PP|v\rangle = P(P|v\rangle) = P(|\alpha\rangle\langle\alpha|v\rangle) = (P|\alpha\rangle)\langle\alpha|v\rangle = (|\alpha\rangle\langle\alpha|\alpha\rangle)\langle\alpha|v\rangle$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

$$PP|v\rangle = P(P|v\rangle) = P(|\alpha\rangle\langle\alpha|v\rangle) = (P|\alpha\rangle)\langle\alpha|v\rangle = (|\alpha\rangle\langle\alpha|\cancel{\alpha}\cancel{\alpha}\overset{1}{\cancel{\alpha}})\langle\alpha|v\rangle = |\alpha\rangle\langle\alpha|v\rangle$$

Adjoint operators

if operator O acts on spaces V and W as

$$O : W \rightarrow V$$

its adjoint, O^\dagger acts as and is defined by

$$O^\dagger : V \rightarrow W$$

where $\vec{v} \in V$ and $\vec{w} \in W$

$$O^\dagger \vec{v} \cdot \vec{w} = \vec{v} \cdot O \vec{w}$$

In terms of matrices, O^\dagger is the conjugate transpose of O

Recall that $\langle x |$ is the conjugate transpose of $|x\rangle$ so that given an operator A and its adjoint A^\dagger , we have $(\langle x | A^\dagger) = (A | x\rangle)^\dagger$

The inner product of $O^\dagger |x\rangle$ and $|w\rangle$ is thus equal to the inner product of $|x\rangle$ and $O |w\rangle$

$$(O^\dagger |x\rangle)^\dagger \equiv (\langle x | O) \rightarrow (\langle x | O) |w\rangle = \langle x | O | w\rangle = \langle x | (O | w\rangle)$$

The projection operator is self-adjoint (or Hermitian) so that $P = P^\dagger$ and applying it multiple times is the same as applying it once. Take $P = |\alpha\rangle\langle\alpha|$

$$PP|v\rangle = P(P|v\rangle) = P(|\alpha\rangle\langle\alpha|v\rangle) = (P|\alpha\rangle)\langle\alpha|v\rangle = (|\alpha\rangle\langle\alpha|\alpha\rangle)\langle\alpha|v\rangle \stackrel{1}{=} |\alpha\rangle\langle\alpha|v\rangle = P|v\rangle$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle)$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\langle 0|0\rangle + b\langle 0|1\rangle)$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle,$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle,$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle)$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle,$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\langle 1|1\rangle)$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle,$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle,$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

$$|P|\psi\rangle|^2 = \langle\psi|P^\dagger P|\psi\rangle$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

$$|P|\psi\rangle|^2 = \langle\psi|P^\dagger P|\psi\rangle = \langle\psi|PP|\psi\rangle = \langle\psi|P|\psi\rangle$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

$$|P|\psi\rangle|^2 = \langle\psi|P^\dagger P|\psi\rangle = \langle\psi|PP|\psi\rangle = \langle\psi|P|\psi\rangle = \langle\psi|0\rangle\langle 0|\psi\rangle$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

$$|P|\psi\rangle|^2 = \langle\psi|P^\dagger P|\psi\rangle = \langle\psi|PP|\psi\rangle = \langle\psi|P|\psi\rangle = \langle\psi|0\rangle\langle 0|\psi\rangle = \bar{a}a = |a|^2$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

$$|P|\psi\rangle|^2 = \langle\psi|P^\dagger P|\psi\rangle = \langle\psi|PP|\psi\rangle = \langle\psi|P|\psi\rangle = \langle\psi|0\rangle\langle 0|\psi\rangle = \bar{a}a = |a|^2$$

$$|P'|\psi\rangle|^2 = \langle\psi|P'|\psi\rangle$$

Measurement of a single qubit

V is the vector space associated with a single-qubit system and the direct sum decomposition of V in the standard basis is $V = S \oplus S'$ where S is generated by $|0\rangle$ and S' is generated by $|1\rangle$

$$P = |0\rangle\langle 0|, \quad P : V \rightarrow S$$
$$P' = |1\rangle\langle 1|, \quad P' : V \rightarrow S'$$

Measurement of state $|\psi\rangle = a|0\rangle + b|1\rangle$ is done as

$$P|\psi\rangle = |0\rangle\langle 0|(a|0\rangle + b|1\rangle) = |0\rangle(a\cancel{\langle 0|0\rangle}^1 + b\cancel{\langle 0|1\rangle}^0) = a|0\rangle, \quad P|0\rangle \rightarrow \frac{a}{|a|}|0\rangle$$

$$P'|\psi\rangle = |1\rangle\langle 1|(a|0\rangle + b|1\rangle) = |1\rangle(a\cancel{\langle 1|0\rangle}^0 + b\cancel{\langle 1|1\rangle}^1) = b|1\rangle, \quad P'|0\rangle \rightarrow \frac{b}{|b|}|1\rangle$$

with probabilities given by

$$|P|\psi\rangle|^2 = \langle\psi|P^\dagger P|\psi\rangle = \langle\psi|PP|\psi\rangle = \langle\psi|P|\psi\rangle = \langle\psi|0\rangle\langle 0|\psi\rangle = \bar{a}a = |a|^2$$

$$|P'|\psi\rangle|^2 = \langle\psi|P'|P|\psi\rangle = \langle\psi|1\rangle\langle 1|\psi\rangle = |b|^2$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|,$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|,$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|,$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle = a_{ij}|ij\rangle,$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle = a_{ij}|ij\rangle, \quad P_{ij}|\phi\rangle \longrightarrow \frac{a_{ij}}{|a_{ij}|}|ij\rangle$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle = a_{ij}|ij\rangle, \quad P_{ij}|\phi\rangle \longrightarrow \frac{a_{ij}}{|a_{ij}|}|ij\rangle$$

The state after measurement is in the normalized form

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle = a_{ij}|ij\rangle, \quad P_{ij}|\phi\rangle \rightarrow \frac{a_{ij}}{|a_{ij}|}|ij\rangle$$

The state after measurement is in the normalized form which differs from $|ij\rangle$ only by a global phase

$$\frac{a_{ij}}{|a_{ij}|}|ij\rangle$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle = a_{ij}|ij\rangle, \quad P_{ij}|\phi\rangle \longrightarrow \frac{a_{ij}}{|a_{ij}|}|ij\rangle$$

The state after measurement is in the normalized form which differs from $|ij\rangle$ only by a global phase

$$\frac{a_{ij}}{|a_{ij}|}|ij\rangle = e^{i\varphi}|ij\rangle$$

Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that $V = S_{00} \oplus S_{01} \oplus S_{10} \oplus S_{11}$ is its decomposition for subspaces S_{ij} spanned by $|ij\rangle$ the projection operators are

$$P_{00} = |00\rangle\langle 00|, \quad P_{01} = |01\rangle\langle 01|, \quad P_{10} = |10\rangle\langle 10|, \quad P_{11} = |11\rangle\langle 11|$$

Measuring a general state $|\phi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = \sum_{m,n} a_{mn}|mn\rangle$ with a projection operator gives

$$P_{ij}|\phi\rangle = |ij\rangle\langle ij| \sum_{m,n} a_{mn}|mn\rangle = a_{ij}|ij\rangle, \quad P_{ij}|\phi\rangle \longrightarrow \frac{a_{ij}}{|a_{ij}|}|ij\rangle$$

The state after measurement is in the normalized form which differs from $|ij\rangle$ only by a global phase and so are equal in the complex projective space

$$\frac{a_{ij}}{|a_{ij}|}|ij\rangle = e^{i\varphi}|ij\rangle \sim |ij\rangle$$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values with probabilities

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values with probabilities

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

$$|P_1|\psi\rangle|^2 = |a_{00}|^2 + |a_{11}|^2$$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values with probabilities

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

$$|P_1|\psi\rangle|^2 = |a_{00}|^2 + |a_{11}|^2$$

$$|P_2|\psi\rangle|^2 = |a_{01}|^2 + |a_{10}|^2$$

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values with probabilities

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

$$|P_1|\psi\rangle|^2 = |a_{00}|^2 + |a_{11}|^2$$

$$|P_2|\psi\rangle|^2 = |a_{01}|^2 + |a_{10}|^2$$

if this is the result, we know the two qubits are equal

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values with probabilities

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$|P_1|\psi\rangle|^2 = |a_{00}|^2 + |a_{11}|^2$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

$$|P_2|\psi\rangle|^2 = |a_{01}|^2 + |a_{10}|^2$$

if this is the result, we know the two qubits are equal

if this is the result, the qubits must be unequal

Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition $V = S_1 \oplus S_2$ where the two subspaces are spanned by $\{|00\rangle, |11\rangle\}$ and $\{|01\rangle, |10\rangle\}$ respectively

The projection operators are $P_1 = |00\rangle\langle 00| + |11\rangle\langle 11|$ and $P_2 = |01\rangle\langle 01| + |10\rangle\langle 10|$

What is the result of measuring a general state $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$?

After measurement, we get one of two values with probabilities

$$P_1|\psi\rangle \longrightarrow |u\rangle = \frac{(a_{00}|00\rangle + a_{11}|11\rangle)}{\sqrt{|a_{00}|^2 + |a_{11}|^2}}$$

$$P_2|\psi\rangle \longrightarrow |v\rangle = \frac{(a_{01}|01\rangle + a_{10}|10\rangle)}{\sqrt{|a_{01}|^2 + |a_{10}|^2}}$$

$$|P_1|\psi\rangle|^2 = |a_{00}|^2 + |a_{11}|^2$$

$$|P_2|\psi\rangle|^2 = |a_{01}|^2 + |a_{10}|^2$$

if this is the result, we know the two qubits
are equal

if this is the result, the qubits must be un-
equal

Note that we do not know the values of the qubits, just whether they are equal or not

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \quad |\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), \end{aligned}$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

when we measure a qubit in state $|v\rangle = |00\rangle$ with this decomposition, what results do we get?

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

when we measure a qubit in state $|v\rangle = |00\rangle$ with this decomposition, what results do we get?

First realize that we can write $|00\rangle = \frac{1}{\sqrt{2}}(|\Phi^+\rangle + |\Phi^-\rangle)$ so that

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

when we measure a qubit in state $|v\rangle = |00\rangle$ with this decomposition, what results do we get?

First realize that we can write $|00\rangle = \frac{1}{\sqrt{2}}(|\Phi^+\rangle + |\Phi^-\rangle)$ so that

$$P_{\Phi^+}|00\rangle \longrightarrow |u\rangle = |\Phi^+\rangle$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

when we measure a qubit in state $|v\rangle = |00\rangle$ with this decomposition, what results do we get?

First realize that we can write $|00\rangle = \frac{1}{\sqrt{2}}(|\Phi^+\rangle + |\Phi^-\rangle)$ so that

$$P_{\Phi^+}|00\rangle \longrightarrow |u\rangle = |\Phi^+\rangle$$

$$|P_{\Phi^+}|00\rangle|^2 = \frac{1}{2}$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

when we measure a qubit in state $|v\rangle = |00\rangle$ with this decomposition, what results do we get?

First realize that we can write $|00\rangle = \frac{1}{\sqrt{2}}(|\Phi^+\rangle + |\Phi^-\rangle)$ so that

$$P_{\Phi^+}|00\rangle \longrightarrow |u\rangle = |\Phi^+\rangle$$

$$P_{\Phi^-}|00\rangle \longrightarrow |u\rangle = |\Phi^-\rangle$$

$$|P_{\Phi^+}|00\rangle|^2 = \frac{1}{2}$$

Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

$$\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), & |\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), & |\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{aligned}$$

If the vector space V has a decomposition

$$V = S_{\Phi^+} \oplus S_{\Phi^-} \oplus S_{\Psi^+} \oplus S_{\Psi^-}$$

when we measure a qubit in state $|v\rangle = |00\rangle$ with this decomposition, what results do we get?

First realize that we can write $|00\rangle = \frac{1}{\sqrt{2}}(|\Phi^+\rangle + |\Phi^-\rangle)$ so that

$$P_{\Phi^+}|00\rangle \longrightarrow |u\rangle = |\Phi^+\rangle$$

$$P_{\Phi^-}|00\rangle \longrightarrow |u\rangle = |\Phi^-\rangle$$

$$|P_{\Phi^+}|00\rangle|^2 = \frac{1}{2}$$

$$|P_{\Phi^-}|00\rangle|^2 = \frac{1}{2}$$