
Today’s outline - January 20, 2022

• Outer products

• Linear transformations

• Projection operators

• Qubit measurement revisited

Reading Assignment: Chapter 4.3-4.4

Homework Assignment #02:
Chapter 3:1,4,8,10,14,15
due Thursday, January 27, 2022

Homework Assignment #03:
Chapter 4:1,2,7,10,15,18
due Thursday, February 03, 2022
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Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩)

= (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)

=

(
1 0
0 0

)

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Outer products

Using Dirac bra-ket notation is a convenient way to represent linear transformations which
operate on vectors

Given two vectors |a⟩ and |b⟩, their inner product, defined as ⟨a|b⟩ is a scalar quantity

Their outer product, |a⟩⟨b| however, is an operator which has the property

(|a⟩⟨b|) |c⟩ = |a⟩ (⟨b|c⟩) = (⟨b|c⟩) |a⟩

The outer product is a matrix operator which acts on a vector and transforms it into a new
vector

One example is the projection operator, for a vector space V associated with a single qubit
system, an example of a projection operator is |0⟩⟨0| with respect to {|0⟩, |1⟩}

|0⟩⟨0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)
Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 20, 2022 2 / 12



Linear transformations

Another example of a linear transformation
on the same space is |0⟩⟨1|

which maps |1⟩
to |0⟩ and |0⟩ to the null vector

|0⟩⟨1| |1⟩ = |0⟩ ⟨1|1⟩ = |0⟩1 = |0⟩

|0⟩⟨1| =
(

0 1
0 0

)

|0⟩⟨1| |0⟩ = |0⟩ ⟨1|0⟩ = |0⟩0 = 0

The four simple transformations in this 2-dimensional space are thus

|0⟩⟨0| =
(

1 0
0 0

)
, |0⟩⟨1| =

(
0 1
0 0

)
, |1⟩⟨0| =

(
0 0
1 0

)
, |1⟩⟨1| =

(
0 0
0 1

)
A general transformation in this space can be easily written as

a|0⟩⟨0|+ b|0⟩⟨1|+ c|1⟩⟨0|+ d |1⟩⟨1| =
(

a b
c d

)
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Examples of linear transformations

A linear transformation, X , that swaps |0⟩ and |1⟩ is

with an alternative notation being

X = |0⟩⟨1|+ |1⟩⟨0| =
(

0 1
0 0

)
+

(
0 0
1 0

)
=

(
0 1
1 0

)
, X :

{
|0⟩ 7→ |1⟩
|1⟩ 7→ |0⟩

In a 2-qubit system, what is the transformation that exchanges |00⟩ and |10⟩ but does not
disturb the rest?

This will be a 4× 4 matrix and the corresponding outer products are

|00⟩⟨10|+ |01⟩⟨01|+ |10⟩⟨00|+ |11⟩⟨11|

=



0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


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Operator formalism

It is evident that an operator in an n-qubit system which maps |j⟩ 7→ |i⟩ and leaves all the
others the same in the standard basis is O = |i⟩⟨j |

a general operator with entries aij is O =
∑
i

∑
j

aij |i⟩⟨j |

taking the expectation value of the operator, will pick out a specific coefficient

⟨m|O|n⟩ = ⟨m|
∑
i

∑
j

aij |i⟩⟨j |n⟩ = ⟨m|
∑
i

ain|i⟩ = amn

the result of applying this operator to a vector |ψ⟩ =
∑

k bk |k⟩ can be worked out

O|ψ⟩ =
(∑

i

∑
j

aij |i⟩⟨j |
)(∑

k

bk |k⟩
)

=
∑
i

∑
j

∑
k

aijbk |i⟩⟨j |k⟩ =
∑
i

∑
j

aijbj |i⟩

the operator can be written in the same way for any basis {|βi ⟩} as O =
∑

i

∑
j bij |βi ⟩⟨βj |
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Measuring with projection operators

Previously used projection onto a detector to describe measurement, now generalize

Consider a subspace, S of V all of whose vectors are orthogonal to a subspace S⊥ such that
V = S ⊕ S⊥

Any vector |v⟩ ∈ V can be written as |v⟩ = s⃗1 + s⃗2 where s⃗1 ∈ S and s⃗2 ∈ S⊥

For any subspace S , the projection operator PS is the linear operator PS : V → S that sends
|v⟩ 7→ s⃗1

To generalize, for any direct sum decomposition of V = S1 ⊕ · · · ⊕ Sk into k orthogonal
subspaces, there are k related projection operators Pi : V → Si such that

Pi |v⟩ = s⃗i , |v⟩ = s⃗1 + · · ·+ s⃗k , si ∈ Si

The state, s⃗i , resulting from the projection operator Pi applied to a state |ψ⟩ is not necessarily
normalized so a detector, with associated decomposition V = S ⊕ S⊥ is applied to |ψ⟩ must
produce a normalized state |ϕ⟩

Pi |ψ⟩ = ci |ϕ⟩ −→ |ϕ⟩ = Pi |ψ⟩/|Pi |ψ⟩|
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Projector examples

Given a single qubit state

apply the projector |0⟩⟨0|

|ψ⟩ = a|0⟩+ b|1⟩

|0⟩⟨0|ψ⟩ = a⟨0|0⟩|0⟩+ b⟨0|1⟩|0⟩ = a|0⟩

Given a 2-qubit state |ϕ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩, apply the projector |10⟩⟨10|

|10⟩⟨10|ϕ⟩ = a00|10⟩⟨10|00⟩+ a01|10⟩⟨10|01⟩+ a10|10⟩⟨10|10⟩+ a11|10⟩⟨10|11⟩ = a10|10⟩

If PS is a projector from an n-dimensional vector space V onto an k-dimensional subspace S
with basis {|α0⟩, . . . , |αk−1⟩} then

PS =
k−1∑
i=0

|αi ⟩⟨αi | = |α0⟩⟨α0|+ · · ·+ |αk−1⟩⟨αk−1|

If |ψ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩ and S is a subspace spanned by |00⟩, |01⟩ then

PS = |00⟩⟨00|+ |01⟩⟨01| −→ PS |ψ⟩ = a00|00⟩+ a01|01⟩, |PS |ψ⟩|2 ̸= 1
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Adjoint operators

if operator O acts on spaces V and W as

its adjoint, O† acts as and is defined by

where v⃗ ∈ V and w⃗ ∈ W

O : W → V

O† : V → W

O†v⃗ · w⃗ = v⃗ · Ow⃗

In terms of matrices, O† is the conjugate transpose of O

Recall that ⟨x | is the conjugate transpose of |x⟩ so that given an operator A and its adjoint
A†, we have (⟨x |A†) = (A|x⟩)†

The inner product of O†|x⟩ and |w⟩ is thus equal to the inner product of |x⟩ and O|w⟩

(O†|x⟩)† ≡ (⟨x |O) −→ (⟨x |O)|w⟩ = ⟨x |O|w⟩ = ⟨x |(O|w⟩)

The projection operator is self-adjoint (or Hermitian) so that P = P† and applying it multiple
times is the same as applying it once. Take P = |α⟩⟨α|

PP|v⟩ = P(P|v⟩) = P(|α⟩⟨α|v⟩) = (P|α⟩)⟨α|v⟩ = (|α⟩⟨α|α⟩)⟨α|v⟩ = |α⟩⟨α|v⟩ = P|v⟩
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Measurement of a single qubit

V is the vector space associated with a single-qubit
system and the direct sum decomposition of V
in the standard basis is V = S ⊕ S ′ where S is
generated by |0⟩ and S ′ is generated by |1⟩

P = |0⟩⟨0|, P : V → S

P ′ = |1⟩⟨1|, P ′ : V → S ′

Measurement of state |ψ⟩ = a|0⟩+ b|1⟩ is done as

P|ψ⟩ = |0⟩⟨0|(a|0⟩+ b|1⟩) = |0⟩(a⟨0|0⟩+ b⟨0|1⟩) = a|0⟩, P|0⟩ −→ a

|a|
|0⟩

P ′|ψ⟩ = |1⟩⟨1|(a|0⟩+ b|1⟩) = |1⟩(a⟨1|0⟩+ b⟨1|1⟩) = b|1⟩, P ′|0⟩ −→ b

|b|
|1⟩

with probabilities given by

|P|ψ⟩|2 = ⟨ψ|P†P|ψ⟩ = ⟨ψ|PP|ψ⟩ = ⟨ψ|P|ψ⟩ = ⟨ψ|0⟩⟨0|ψ⟩ = āa = |a|2

|P ′|ψ⟩|2 = ⟨ψ|P ′|ψ⟩ = ⟨ψ|1⟩⟨1|ψ⟩ = |b|2
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Measuring a 2-qubit state

If V is a vector space in a 2-qubit system such that V = S00 ⊕ S01 ⊕ S10 ⊕ S11 is its
decomposition for subspaces Sij spanned by |ij⟩ the projection operators are

P00 = |00⟩⟨00|, P01 = |01⟩⟨01|, P10 = |10⟩⟨10|, P11 = |11⟩⟨11|

Measuring a general state |ϕ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩ =
∑

m,n amn|mn⟩ with a
projection operator gives
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Measuring bits for equality

In a 2-qubit system, V is the vector space with associated decomposition V = S1 ⊕ S2 where
the two subspaces are spanned by {|00⟩, |11⟩} and {|01⟩, |10⟩} respectively

The projection operators are P1 = |00⟩⟨00|+ |11⟩⟨11|

and P2 = |01⟩⟨01|+ |10⟩⟨10|

What is the result of measuring a general state |ψ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩?

After measurement, we get one of two values with probabilities

P1|ψ⟩ −→ |u⟩ = (a00|00⟩+ a11|11⟩)√
|a00|2 + |a11|2

|P1|ψ⟩|2 = |a00|2 + |a11|2

if this is the result, we know the two qubits
are equal

P2|ψ⟩ −→ |v⟩ = (a01|01⟩+ a10|10⟩)√
|a01|2 + |a01|2

|P2|ψ⟩|2 = |a01|2 + |a10|2

if this is the result, the qubits must be un-
equal

Note that we do not know the values of the qubits, just whether they are equal or not
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Measurement in the Bell decomposition

Recall the four Bell states for a 2-qubit system

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩),

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

If the vector space V has a decomposition V = SΦ+ ⊕ SΦ− ⊕ SΨ+ ⊕ SΨ−

when we measure a qubit in state |v⟩ = |00⟩ with this decomposition, what results do we get?

First realize that we can write |00⟩ = 1√
2
(|Φ+⟩+ |Φ−⟩) so that

PΦ+ |00⟩ −→ |u⟩ = |Φ+⟩

|PΦ+ |00⟩|2 = 1

2

PΦ− |00⟩ −→ |u⟩ = |Φ−⟩

|PΦ− |00⟩|2 = 1

2
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