
Today’s outline - January 18, 2022

• Multiple qubit systems

• Entanglement

• Measurement of n-qubit systems

• Quantum key distribution revisited

Reading Assignment: Chapter 4.1-4.2

Homework Assignment #01:
Chapter 2:1,2,3,5,6,11
due Thursday, January 20, 2022

Homework Assignment #02:
Chapter 3:1,4,8,10,14,15
due Thursday, January 27, 2022
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Tensor product review

Quantum systems, such as qubits combine as tensor products so for V and W with bases

A = {|α1⟩, |α2⟩, . . . , |αn⟩}, B = {|β1⟩, |β2⟩, . . . , |βm⟩}

the tensor product V ⊗W is an n ×m-dimensional space consisting of elements |αi ⟩ ⊗ |βj⟩

for k = min(n,m), all elements of V ⊗W have the form

|v1⟩ ⊗ |w1⟩+ |v2⟩ ⊗ |w2⟩+ · · ·+ |vk⟩ ⊗ |wk⟩

the ⊗ symbol will often be dropped with the understanding that the tensor product is always
implied: |v⟩ ⊗ |w⟩ → |v⟩|w⟩

the tensor product of n 2-dimensional vector spaces has dimension 2n

most vectors |u⟩ ∈ V ⊗W cannot be written as the tensor product of |v⟩ ∈ V and |w⟩ ∈ W
these are so-called entangled states and are of fundamental importance to quantum computing

for entangled states, it is meaningless to discuss the state of a single qubit that is part of the
system
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Standard basis for multiple qubit systems

For a system of n qubits, the standard basis of the combined space Vn−1 ⊗ · · · ⊗V0 is given by
2n unit vectors: {|0⟩n−1 ⊗ · · · ⊗ |0⟩0}, . . . , {|1⟩n−1 ⊗ · · · ⊗ |1⟩0}

the state of a system with n qubits can be
written in the explicit or more compact form

the 2n standard basis vectors in the compact
notation are thus

an even more compact form is to use the
decimal value of the binary representation

|b⟩n−1 · · · |b⟩1|b⟩0 ≡ |bn−1 · · · b1b0⟩

{|0 · · · 00⟩, |0 · · · 01⟩, |0 · · · 10⟩, · · · , |1 · · · 11⟩}

{|0⟩, |1⟩, |2⟩, · · · , |2n − 1⟩}

given a 2 qubit state it is possible to represent it in the full

, compact, or vector notations

1
2 |00⟩+

i
2 |01⟩+

1√
2
|11⟩ = 1

2 |0⟩+
i
2 |1⟩+

1√
2
|3⟩ =


1
2
i
2

0
1√
2


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For a system of n qubits, the standard basis of the combined space Vn−1 ⊗ · · · ⊗V0 is given by
2n unit vectors: {|0⟩n−1 ⊗ · · · ⊗ |0⟩0}, . . . , {|1⟩n−1 ⊗ · · · ⊗ |1⟩0}

the state of a system with n qubits can be
written in the explicit or more compact form

the 2n standard basis vectors in the compact
notation are thus

an even more compact form is to use the
decimal value of the binary representation

|b⟩n−1 · · · |b⟩1|b⟩0 ≡ |bn−1 · · · b1b0⟩

{|0 · · · 00⟩, |0 · · · 01⟩, |0 · · · 10⟩, · · · , |1 · · · 11⟩}

{|0⟩, |1⟩, |2⟩, · · · , |2n − 1⟩}

given a 2 qubit state it is possible to represent it in the full, compact, or vector notations
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Alternate bases

Generally, the standard basis is used for multiple
qubit systems but occasionally an alternate basis
is useful

one of the more common bases for a 2-qubit sys-
tem is the Bell basis: |Φ+⟩, |Φ−⟩, |Ψ+⟩, |Ψ−⟩

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩)

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

just as for a single qubit, there is redundance in the 2n-dimensional space generated by n
qubits since global phase factors distribute over tensor products

|v⟩ ⊗
(
e iϕ|w⟩

)
= e iϕ (|v⟩ ⊗ |w⟩) =

(
e iϕ|v⟩

)
⊗ |w⟩

phase factors in individual qubits of a single term in a superposition can be factored out

1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩) = 1

2 [(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)] = 1
2 [|00⟩+ |01⟩+ |10⟩+ |11⟩](

1
2 |0⟩+

√
3
2 |1⟩

)
⊗
(
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2
|0⟩+ i√

2
|1⟩

)
= 1
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Conventional representation

Just as for a single qubit, the global phase is indeterminate and by convention, a quantum
superposition is written

a0|0 · · · 00⟩+ a1|0 · · · 01⟩+ · · ·+ a2n−1|1 · · · 11⟩

with the first non-zero coefficient being real and non-negative to ensure a unique
representation for each state

for an n-qubit system there are 2n − 1 unique complex coefficients for each vector

the space in which vectors which are multiples of each other are considered equivalent is called
the complex projective space of dimension 2n − 1

the expression |v⟩ ∼ |w⟩ means that the two vectors represent the same quantum state
because they differ only by a global phase

a change in relative phase represents a different state

1√
2
(e iϕ|00⟩+ |11⟩)

≁ 1√
2
(|00⟩+ |11⟩)

1√
2
(e iϕ|00⟩+ e iϕ|11⟩)

∼ 1√
2
e iϕ(|00⟩+ |11⟩) ∼ 1√

2
(|00⟩+ |11⟩)
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Entanglement

For an n qubit system, only a few of the 2n pos-
sible states can be described as product states of
individual qubit states

therefore the vast majority of states in the system
are so-called entangled states

the Bell states are an example of entangled states
of a 2-qubit system

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩)

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

for example, the |Φ+⟩ Bell state cannot be described by the product below

(a1|0⟩1 + b1|1⟩1)⊗ (a2|0⟩2 + b2|1⟩2) = a1a2|00⟩+ a1b2|01⟩+ b1a2|10⟩+ b1b2|11⟩

if a1b2 = 0, then either a1a2 = 0 or b1b2 = 0 and the same if b1a2 = 0

the two particles in a Bell state are said to be maximally entangled and are called an EPR pair
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More about entanglement

Entanglement is determined with respect to a specific decomposition of the
state space, if

|ψ⟩ = |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩ ∈ V , V = V1 ⊗ V2 ⊗ · · · ⊗ Vn

then |ψ⟩ is separable (or unentangled) with respect to the specific decomposi-
tion defined by Vi

The default decomposition for an n-qubit system is the tensor product of
the n two-dimensional vector spaces corresponding to the individual qubits:
Vn−1, . . . ,V0

Entanglement is not, however, dependent on basis, for example the Bell state
is entangled in any of the three common 2-qubit bases

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ | − −⟩) = 1√

2
(|i ī ⟩+ |ī i ⟩)
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Multiple meanings of entanglement

Since entanglement is not an intrinsic property of the state but depends on the particular
decomposition, it is often convenient to use a decomposition into subsystems where the state
is separable,

consider the 4-qubit state

|ψ⟩ = 1
2 (|00⟩+ |11⟩+ |22⟩+ |33⟩) = 1

2 (|0000⟩+ |0101⟩+ |1010⟩+ |1111⟩)

= 1
2 (|0⟩3|0⟩2|0⟩1|0⟩0 + |0⟩3|1⟩2|0⟩1|1⟩0 + |1⟩3|0⟩2|1⟩1|0⟩0 + |1⟩3|1⟩2|1⟩1|1⟩0)

= 1√
2
(|0⟩3|0⟩1 + |1⟩3|1⟩1)⊗ 1√

2
(|0⟩2|0⟩0 + |1⟩2|1⟩0)

thus |ψ⟩ is not entangled with respect to the system decomposition into a subsystem of qubits
1 & 3 and qubits 0 & 2 however, it can be shown that any other subsystem decomposition
leaves |ψ⟩ entangled

|ψ⟩ ̸=

1√
2
(|0⟩3|0⟩2 + |1⟩3|1⟩2)⊗ 1√

2
(|0⟩1|0⟩0 + |1⟩1|1⟩0)

= 1
2 (|0⟩3|0⟩2|0⟩1|0⟩0 + |0⟩3|0⟩2|1⟩1|1⟩0 + |1⟩3|1⟩2|0⟩1|0⟩0 + |1⟩3|1⟩2|1⟩1|1⟩0)

= 1
2 (|0000⟩+ |0011⟩+ |1100⟩+ |1111⟩) = 1

2 (|00⟩+ |03⟩+ |30⟩+ |33⟩)
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Measuring multiple qubits

Suppose we have an n-qubit system with vector space V of dimensionality N = 2n

A device that takes measurements on this system will have an associated direct sum
decomposition into orthogonal subspaces given by V = S1 ⊕ · · · ⊕ Sk , k ≤ N

where k is the maximum number of possible outcomes of the measurement of a state with this
device

The polarization of a photon is a trivial example of this where the system is defined as n = 1,
N = 2, and k = 2, and the detector has an orthonormal basis {|v1⟩, |v2⟩}

Each of the orthonormal basis vectors, |vi ⟩ generates a one-dimensional subspace, Si consisting
of a|vi ⟩ and V = S1 ⊕ S2

When a measurement is made with the polarization detector, the qubit state will then lie
entirely in one of the two subspaces, S1 or S2
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Measurement formalism

Similarly, with an n-qubit system, when the device with the decomposition V = S1 ⊕ · · · ⊕ Sk ,
the state |ψ⟩ is

|ψ⟩ = a1|ψ1⟩ ⊕ · · · ⊕ ai |ψi ⟩ ⊕ · · · ⊕ ak |ψk⟩, |ψi ⟩ ∈ Si , a1 ≥ 0, Im{a1} ≡ 0

When the device interacts with the state |ψ⟩, the state will end up in state |ψi ⟩ ∈ Si with a
probability of |ai |2

Suppose a device measured a single qubit in the Hadamard basis{
|+⟩ = 1√

2
(|0⟩+ |1⟩) , |−⟩ = 1√

2
(|0⟩ − |1⟩)

}
|+⟩ and |−⟩ generate S+ and S− respectively

|ψ⟩ = a|0⟩+ b|1⟩ = a+b√
2
|+⟩+ a−b√

2
|−⟩

|ψ⟩ is then measured as |+⟩ with probability
∣∣∣a+b√

2

∣∣∣2 and |−⟩ with probability
∣∣∣a−b√

2

∣∣∣2
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Measurement in a 2-qubit system

Consider a 2-qubit system with a measuring device that uses the standard basis and associated
decomposition V = S1 ⊕ S2 such that

S1 = |0⟩1 ⊗ V2, span(S1) = {|00⟩, |01⟩} S2 = |1⟩1 ⊗ V2, span(S2) = {|10⟩, |11⟩}

This device is used to measure an arbitrary 2-qubit state |ψ⟩ with normalization factors

|ψ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩ = c1|ψ1⟩+ c2|ψ1⟩
|ψ1⟩ = 1

c1
(a00|00⟩+ a01|01⟩) ∈ S1 |ψ2⟩ = 1

c2
(a10|10⟩+ a11|11⟩) ∈ S2

c1 =
√

|a00|2 + |a01|2, c2 =
√
|a10|2 + |a11|2

Measurement with this device will give |ψ1⟩
with probability
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Measurement in the Hadamard basis

A device that measured the first qubit of a 2-qubit system with respect to the Hadamard basis
{|+⟩, |−⟩} has an associated decomposition V = S ′

1 ⊕ S ′
2 such that

S ′
1 = |+⟩ ⊗ V2, span(S ′

1) = {|+⟩|0⟩, |+⟩|1⟩} S ′
2 = |−⟩ ⊗ V2, span(S ′

2) = {|−⟩|0⟩, |−⟩|1⟩}

This device is used to measure an arbitrary 2-qubit state |ψ⟩ with normalization factors

|ψ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩ = c ′1|ψ′
1⟩+ c ′2|ψ′

1⟩

|ψ′
1⟩ = 1

c ′1

(
a00+a10√

2
|+⟩|0⟩+ a01+a11√

2
|+⟩|1⟩

)
|ψ′

2⟩ = 1
c ′2

(
a00−a10√

2
|−⟩|0⟩+ a01−a11√

2
|−⟩|1⟩

)
c ′1 = c ′2 =

√
|a00|2 + |a01|2 + |a10|2 + |a11|2/2

Measurement with this device will give |ψ′
1⟩ and |ψ′

2⟩ with equal probabilities

A special case is |Φ+⟩ = 1√
2
(|00⟩+ |11⟩) with a00 = a11 =

1√
2
and a10 = a01 = 0
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Quantum key distribution with entangled states

The Ekert91 protocol uses entangled states to transmit keys

A series of qubits are created in the entangled state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Alice gets the first qubit of the pair and Bob gets the second

Each of them measures their qubit using either the standard basis, {|0⟩, |1⟩}, or the Hadamard
basis, {|+⟩, |−⟩}, chosen randomly and independently

They compare their bases and discard those bits where they differ. Why?

If Alice obtains |0⟩ using the standard basis, then they know the entire entangled state
becomes |00⟩ and Bob will also measure |0⟩ in the standard basis

If Bob uses the Hadamard basis, he will get |0⟩ and |1⟩ with equal probability so the differing
bases must be discarded

Since there is no exchange of quantum states in this protocol Eve has a much harder time
gathering any information about the key
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