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Chapter 2:1,2,3,5,6,11
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Quantum computing requires an understanding of the postulates of quantum mechanics,
specifically how measurements are performed

Given a 2-state system, quantum mechanics states that there can only be two results from a
measurement, the eigenvalues of the system in the basis that is being used for measurement

The probability of obtaining a specific result is determined by the square of the magnitude of
the amplitude of that result in the superposition state of the system
consider the measurement of a photon by a {1, 1=}
vertical polarization detector, the basis is
=a|T) + b|—
the state of the photon can be expressed as ) I =)
: o ; . 2
a measurement by the vertical polarization photon present with probability |al

detector will give no photon present with probability |b|?

After the measurement any photon that passed through the polarizer is now in the | 1) state
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A superposition is not just a probabilistic mixture of two states, it is a definite state which
consists of both its constitutent states

Qubits can exist in an infinite number of superposition states yet do not contain more
information than classical bits since a single measurement produces only one of two answers
depending on the basis

There is much more to quantum theory but this is sufficient to develop a theory of quantum
computing

Realizing an actual quantum computer requires a deep knowledge of quantum mechanics and
experimental quantum systems
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Quantum cryptography

Quantum cryptography is not about sending entire messages using quantum systems

instead messages are sent using standard cryptography means with secret keys

computer-generated secret keys, even if long, are theoretically subject to cracking with enough

computing power

the solution is to exchange the secret key using the combination of a quantum channel and a

public channel

use photons polarized in two of three possible ba-
sis sets (rectilinear, diagonal, circular) and assign
0 and 1 bit values to each polarization direction
possible

Photons
Rectilinear ‘ H
polarization ] 0—0—»
mode ‘ | ’

Diagonal ~ /

polarization \ e ’ ‘
mode N

Established bit value 0 1
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Quantum cryptography implementation Y

Polarization filter

o TeeTilibh

Allce

Detection
filter

Lnev

1. Alice chooses and records the filter type and the bit value for a series of photons sent

2. Bob measures each incoming photon with a random choice of filter and records the choice
and result
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Polarization filter
Ilce

+ - 'R

photon

Detection
filter

Lner

1. Alice chooses and records the filter type and the bit value for a series of photons sent

Bob measures each incoming photon with a random choice of filter and records the choice
and result

Bob tells Alice his filter choices on a public channel and Alice confirms which of his filters
were correct

http://blogs.scientificamerican.com/guest-blog/2012/11/20/quantum-cryptography-at-the-end-of-your-road/
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Quantum cryptography implementation Y

Polarization filter

\ ' - 2 e \1\‘

Alice
o Unpolarized

photon

Laser

|
Detection

filter

1. Alice chooses and records the filter type and the bit value for a series of photons sent

2. Bob measures each incoming photon with a random choice of filter and records the choice
and result

3. Bob tells Alice his filter choices on a public channel and Alice confirms which of his filters
were correct

4. The remaining bits form the key that Bob and Alice can use
http://blogs.scientificamerican.com/guest-blog/2012/11/20/quantum-cryptography-at-the-end-of-your-road/
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T
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Eavesdropping scheme

Detection
filter

§ . Bob
| Q
Polarization filter ~

Laser

B,
/ o

N

/

/&
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Eavesdropping scheme Y

Detection
filter

+E* -]

Polarization filter

Alice /
itted photon T\
Unpolarized | \
photon . \‘ -
Detection

filter

Laur

Suppose that Eve attempts to intercept a photon by measuring with a particular basis and
then passing the resulting photon on to Bob
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Eavesdropping scheme Y

Detection
filter

! O

‘lic;ﬁifl:"“‘ "I"""‘i‘”* W * u \ * "
‘ < ~ 2.‘

Laser

Suppose that Eve attempts to intercept a photon by measuring with a particular basis and
then passing the resulting photon on to Bob

An error may be created if Eve chooses the wrong filter
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Key distribution with eavesdropper i

Alice's random bit

Alice’'s random basis

Polarization sent

L+

L+ || x

S+ |=|+ o
v

N S AN
N\

Eve's polarization

X
+ 4+

0

+

4
Eve's random basis + X

T

+

Bob's random basis
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Detecting eavesdroppers 7

Eve can be detected with high probability by comparing a sufficiently large
number of transmitted bits, resulting in some added waste
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Detecting eavesdroppers \ i

Eve can be detected with high probability by comparing a sufficiently large
number of transmitted bits, resulting in some added waste

Eve's probability of choosing the incorrect basis is 50%

When Bob measures an intercepted photon with the correct basis, he has
50% chance of getting the incorrect result

Probability of having an error with the correct basis is 25%
By comparing n key bits, the probability of detecting Eve is Py =1 — (%)n

To detect Eve with Py =1 x 1072 requires n = 72
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First experimental implementation (BB84 protocol) \id

“Experimental quantum cryptography,” C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Crypt. 5, 3-28 (1992).
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First experimental implementation (BB84 protocol) \id

715,000 pulses — 2000 basis matches — 754 bit of shared key
with eavesdropper having < 107 bits of information

“Experimental quantum cryptography,” C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Crypt. 5, 3-28 (1992).
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qubit states

the {|+),|—)} basis is also called the Hadamard basis
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these qubits can be mapped onto the com-
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Qubit complex plane

Starting with the general representation of a qubit ) = e|al|0) + |b||1)
_ 1 _

we define four additional special orthogonal single +) = ﬁ(|0> 1) =1~
qubit states =) =25 (10) = 1)) =)
the {|+),|—)} basis is also called the Hadamard basis i) = V2 (10) +11))
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Extended complex plane

The qubit basis vectors which are properly

mapped can be drawn on a unit circle in the
complex plane
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Extended complex plane

The qubit basis vectors which are properly
mapped can be drawn on a unit circle in the
complex plane

by adding an extra point called co and defining
the mapping: |1) — oo
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Extended complex plane 7

The qubit basis vectors which are properly
mapped can be drawn on a unit circle in the
complex plane

by adding an extra point called co and defining
the mapping: |1) — oo

since each of the qubit basis vectors are normal-
ized they have a magnitude of 1 the extended
complex plane can be mapped to a sphere of
radius 1
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Extended complex plane i

The qubit basis vectors which are properly
mapped can be drawn on a unit circle in the
complex plane

by adding an extra point called co and defining
the mapping: |1) — oo

since each of the qubit basis vectors are normal-
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complex plane can be mapped to a sphere of
radius 1
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function of 8 and ¢
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Extended complex plane i

The qubit basis vectors which are properly
mapped can be drawn on a unit circle in the
complex plane

by adding an extra point called co and defining
the mapping: |1) — oo

since each of the qubit basis vectors are normal-
ized they have a magnitude of 1 the extended
complex plane can be mapped to a sphere of
radius 1

the general qubit can also be represented as a
function of 8 and ¢

[) = cos (§) [0) +sin (§) €”|1) = (

9

cos (3) this maps an arbitrary single qubit

sin (g) el® state to a point on the surface of the
Bloch sphere
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Spherical coordinates & the Bloch sphere 7

Given the spherical representation of a gen- 1) = cos (%) 0) + sin (%) ei¢’1>
eral qubit, the three basis sets can easily be 0>
mapped onto the surface of the Bloch sphere
—0
|->
H I
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|+>
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Stereographic projection & the Bloch sphere \d

An alternative model is that of the stereographic
projection which posits that & = s + it is complex
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every element |x) € V & W can be written as |x) = |v) & |w), where |v) € V and |w) € W
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Direct sum of vector spaces VY

Consider two classical state spaces, V' and W with bases

A= {’(11>, |Oq>, ) |Ozn>}, B = {‘51>a |61>7 R |5m>}

the combined state space of these two state spaces is obtained through a direct sum, V & W
with basis

AUB = {|a1>a |(11>, ) |('Yn>7 |61>7 |51>) ) |Bm>}
every element |x) € V & W can be written as |x) = |v) & |w), where |v) € V and |w) € W

addition and scalar multiplication are done on the component systems separately and then
adding results and inner products are performed as

((vo| ® (w2l) (Iv1) ® [w1)) = (va|v) + (wa|w1)

thus, for a system of n two-state objects, the dimension of the state space of the system is 2n,
linear with the number of objects
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Tensor product of vector spaces \ i

Quantum systems, such as qubits combine as tensor products so for V' and W with bases

A={laa),le2), s lamt,  B=A{[B1),152);- - [Bm)}
the tensor product V' ® W is an n x m-dimensional space consisting of elements |o;) ® |f;)
operations on such a vector space are now:
(Ivi) + [v2)) @ [w) = |v1) ® [w) + |v2) @ |w)
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Tensor product of vector spaces Y

Quantum systems, such as qubits combine as tensor products so for V' and W with bases

A= {’O‘1>7 |a2>7 SRR |an>}7 B = {‘51% ‘B2>7 SRR |5m>}

the tensor product V' ® W is an n x m-dimensional space consisting of elements |o;) ® |f;)
operations on such a vector space are now:
(Ivi) + [v2)) @ [w) = |v1) ® [w) + |v2) @ |w)
V) ® (Iw1) + |w2)) = [v) @ [w1) + |v) @ [wa)
(alv)) @ |w) = [v) @ (alw)) = a(|v) @ [w))
for k = min(n, m), all elements of V ® W have the form

Vi) ® [w1) + [v2) @ [w2) + -+ + |vi) @ |wg)

the ® symbol will often be dropped with the understanding that the tensor product is always
implied: |v) ® |w) — |v)|w)
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More about tensor products NG

The inner product of V ® W is
((vo| @ (w2l) - (Jv1) ® [w1)) = (va|vi)(wa|wr)

the tensor product of two unit vectors is also a unit vector, and given orthonormal bases
{lai)} and {|5;)} for V and W, the basis {|a;)} ® {|5;)} for V ® W is also orthonormal
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More about tensor products V

The inner product of V ® W is
((vo| @ (w2l) - (Jv1) ® [w1)) = (va|vi)(wa|wr)

the tensor product of two unit vectors is also a unit vector, and given orthonormal bases
{lai)} and {|5;)} for V and W, the basis {|a;)} ® {|5;)} for V ® W is also orthonormal

the tensor product of n 2-dimensional vector spaces has dimension 2"

most vectors |u) € V @ W cannot be written as the tensor product of |v) € V and |w) € W
these are so-called entangled states and are of fundamental importance to quantum computing
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the tensor product of two unit vectors is also a unit vector, and given orthonormal bases
{lai)} and {|5;)} for V and W, the basis {|a;)} ® {|5;)} for V ® W is also orthonormal

the tensor product of n 2-dimensional vector spaces has dimension 2"

most vectors |u) € V @ W cannot be written as the tensor product of |v) € V and |w) € W
these are so-called entangled states and are of fundamental importance to quantum computing

for entangled states, it is meaningless to discuss the state of a single qubit that is part of the
system
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