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Qubit review

A qubit is a two-state quantum system that can be modeled as a superposition of two linearly
independent states called the basis of the space in which the qubit exists

|q⟩ = a|0⟩+ b|1⟩, a = |a|e iα, b = |b|e iβ

Basis vectors must be orthonormal, that is for the basis {|β1⟩, |β2⟩}, the inner product must
be ⟨βi |βj⟩ = δij

The ket, |α⟩, corresponds to a column
vector, α, in linear algebra while a bra
⟨α| is its conjugate transpose, α†, a
row vector

In the standard basis, {|0⟩, |1⟩}, the
vector |v⟩ = a|0⟩+ b|1⟩ is

|α⟩ =

 a1
...
an

 , ⟨α| = (a1 · · · an)

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
, |v⟩ =

(
a
b

)
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Postulates of quantum mechanics

Quantum computing requires an understanding of the postulates of quantum mechanics,
specifically how measurements are performed

Given a 2-state system, quantum mechanics states that there can only be two results from a
measurement, the eigenvalues of the system in the basis that is being used for measurement

The probability of obtaining a specific result is determined by the square of the magnitude of
the amplitude of that result in the superposition state of the system

consider the measurement of a photon by a
vertical polarization detector, the basis is

the state of the photon can be expressed as

a measurement by the vertical polarization
detector will give

{| →⟩, |→⟩}

|γ⟩ = a| →⟩+ b|→⟩

photon present with probability |a|2

no photon present with probability |b|2

After the measurement any photon that passed through the polarizer is now in the | →⟩ state
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More quantum principles

A quantum state may be a superposition in the standard basis but not in another basis

|α⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ = |+⟩, {|+⟩, |−⟩} ≡

{
1√
2
|0⟩+ 1√

2
|1⟩, 1√

2
|0⟩ − 1√

2
|1⟩
}

A superposition is not just a probabilistic mixture of two states, it is a definite state which
consists of both its constitutent states

Qubits can exist in an infinite number of superposition states yet do not contain more
information than classical bits since a single measurement produces only one of two answers
depending on the basis
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Quantum cryptography

Quantum cryptography is not about sending entire messages using quantum systems

instead messages are sent using standard cryptography means with secret keys

computer-generated secret keys, even if long, are theoretically subject to cracking with enough
computing power

the solution is to exchange the secret key using the combination of a quantum channel and a
public channel

use photons polarized in two of three possible ba-
sis sets (rectilinear, diagonal, circular) and assign
0 and 1 bit values to each polarization direction
possible
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Quantum cryptography implementation

1. Alice chooses and records the filter type and the bit value for a series of photons sent

2. Bob measures each incoming photon with a random choice of filter and records the choice
and result

3. Bob tells Alice his filter choices on a public channel and Alice confirms which of his filters
were correct

4. The remaining bits form the key that Bob and Alice can use

http://blogs.scientificamerican.com/guest-blog/2012/11/20/quantum-cryptography-at-the-end-of-your-road/
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Key distribution procedure

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↘ ↗ → ↗ → →

Public discussion Y Y Y Y

Shared secret key 0 1 0 1
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Eavesdropping scheme

Suppose that Eve attempts to intercept a photon by measuring with a particular basis and
then passing the resulting photon on to Bob

An error may be created if Eve chooses the wrong filter
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Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Key distribution with eavesdropper

Alice’s random bit 0 1 1 0 1 0 0 1

Alice’s random basis + + × + × × × +

Polarization sent ↑ → ↘ ↑ ↘ ↗ ↗ →

Eve’s random basis + × + + × + × +

Eve’s polarization ↑ ↗ → ↑ ↘ → ↗ →

Bob’s random basis + × × × + × + +

Polarization measured ↑ ↗ ↗ ↘ → ↗ ↑ →

Public discussion Y Y Y Y

Shared secret key 0 0 0 1

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 9 / 20



Detecting eavesdroppers

Eve can be detected with high probability by comparing a sufficiently large
number of transmitted bits, resulting in some added waste

Eve’s probability of choosing the incorrect basis is 50%

When Bob measures an intercepted photon with the correct basis, he has
50% chance of getting the incorrect result

Probability of having an error with the correct basis is 25%

By comparing n key bits, the probability of detecting Eve is Pd = 1−
(
3
4

)n
To detect Eve with Pd = 1× 10−9 requires n = 72
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An unknown quantum state ]P) can be disassembled into, then later reconstructed from, purely
classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations. To do
so the sender, "Alice," and the receiver, "Bob," must prearrange the sharing of an EPR-correlated
pair of particles. Alice makes a joint measurement on her EPR particle and the unknown quantum
system, and sends Bob the classical result of this measurement. Knowing this, Bob can convert the
state of his EPR particle into an exact replica of the unknown state ]P) which Alice destroyed.

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

The existence of long range correlations between
Einstein-Podolsky-Rosen (EPR) [1] pairs of particles
raises the question of their use for information transfer.
Einstein himself used the word "telepathically" in this
contempt [2]. It is known that instantaneous information
transfer is definitely impossible [3]. Here, we show that
EPR correlations can nevertheless assist in the "telepor-
tation" of an intact quantum state from one place to
another, by a sender who knows neither the state to be
teleported nor the location of the intended receiver.

Suppose one observer, whom we shall call "Alice, " has
been given a quantum system such as a photon or spin-&
particle, prepared in a state ]P) unknown to her, and she
wishes to communicate to another observer, "Bob," suf-
ficient information about the quantum system for him to
make an accurate copy of it. Knowing the state vector
]P) itself would be sufficient information, but in general
there is no way to learn it. Only if Alice knows before-
hand that ~qb) belongs to a given orthonormal set can she
make a measurement whose result will allow her to make
an accurate copy of [P). Conversely, if the possibilities
for ~P) include two or more nonorthogonal states, then no
measurement will yield sufhcient information to prepare

a perfectly accurate copy.
A trivial way for Alice to provide Bob with all the in-

formation in [P) would be to send the particle itself. If she
wants to avoid transferring the original particle, she can
make it. interact unitarily with another system, or "an-
cilla, " initially in a known state ~ap), in such a way that
after the interaction the original particle is left in a stan-
dard state ~Pp) and the ancilla is in an unknown state
]a) containing complete information about ~P). If Al-
ice now sends Bob the ancilla (perhaps technically easier
than sending the original particle), Bob can reverse her
actions to prepare a replica of her original state ~P). This
"spin-exchange measurement" [4] illustrates an essential
feature of quantum information: it can be swapped from
one system to another, but it cannot be duplicated or
"cloned" [5]. In this regard it is quite unlike classical
information, which can be duplicated at will. The most
tangible manifestation of the nonclassicality of quantum
information is the violation of Bell s inequalities [6) ob-
served [7] in experiments on EPR states. Other rnanifes-
tations include the possibility of quantum cryptography
[8), quantum parallel computation [9], and the superior-
ity of interactive measurements for extracting informa-
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tion from a pair of identically prepared particles [10].
The spin-exchange method of sending full information

to Bob still lumps classical and nonclassical information
together in a single transmission. Below, we show how
Alice can divide the full information encoded in I&/) into
two parts, one purely classical and the other purely non-
classical, and send them to Bob through two diferent
channels. Having received these two transmissions, Bob
can construct an accurate replica of IP). Of course Alice's
original IP) is destroyed in the process, as it must be to
obey the no-cloning theorem. We call the process we are
about to describe teleportation, a term from science fic-
tion meaning to make a person or object disappear while
an exact replica appears somewhere else. It must be em-
phasized that our teleportation, unlike some science fic-
tion versions, defies no physical laws. In particular, it
cannot take place instantaneously or over a spacelike in-
terval, because it requires, among other things, sending
a classical message from Alice to Bob. The net result
of teleportation is completely prosaic: the removal of IP)
from Alice's hands and its appearance in Bob's hands a
suitable time later. The only remarkable feature is that,
in the interim, the information in IP) has been cleanly
separated into classical and nonclassical parts. First we
shall show how to teleport the quantum state IP& of a
spin-2 particle. Later we discuss teleportation of more
complicated states.

The nonclassical part is transmitted first. To do so,
two spin-& particles are prepared in an EPR singlet state

lc'i~ ) =(+)

(I Ti& l~) +
I lx) I T~&)

(I Ti) I T~) +
I li) I l~))

(2&

Note that these four states are a complete orthonormal
basis for particles 1 and 2.

It is convenient to write the unknown state of the first
particle as

lei) = ~ITi&+ l lli),

the other (particle 3) is given to Bob. Although this
establishes the possibility of nonclassical correlations be-
tween Alice and Bob, the EPR pair at this stage contains
no information about IP). Indeed the entire system, com-
prising Alice's unknown particle 1 and the EPR pair,
is in a pure product state, I/i) I@&3 ), involving neither
classical correlation nor quantum entanglement between
the unknown particle and the EPR pair. Therefore no
measurement on either member of the EPR pair, or both
together, can yield any information about

I
P&. An entan-

glement between these two subsystems is brought about
in the next step.

To couple the first particle with the EPR pair, Alice
performs a complete measurement of the von Neumann
type on the joint system consisting of particle 1 and parti-
cle 2 (her EPR particle). This measurement is performed
in the Bell operator basis [ll] consisting of I@i& ) and

1@~3 ) =(—)
2 3 2 3 with Ial + Ibl = 1. The complete state of the three

particles before Alice's measurement is thus
The subscripts 2 and 3 label the particles in this EPR
pair. Alice's original particle, whose unknown state IP)
she seeks to teleport to Bob, will be designated by a
subscript 1 when necessary. These three particles may be
of diferent kinds, e.g. , one or more may be photons, the
polarization degree of freedom having the same algebra
as a

0

(I Ti) T~) I ls) —Ti) I l~) I T3) &

+ (I li) I T2) I L3) I ll) l2& I T3))

spin. In this equation, each direct product
I i)l 3) can be ex-

ne EPR particle (particle 2) is given to Alice, while pressed in terms of the Bell operator basis vectors IC&z )
(+)and I@i~ ), and we obtain

I+i~3) =
g [l@xa'& (—~l T3) —l lls&) + l@gg') (—~l T3) + l l13)) + IC'ig'& (&I ls) + l

I T3)) + IC'i~') (aIL3& —l
I T3&)]

(,0) IA), (, D) lda).

(6)

It follows that, regardless of the unknown state I/i), the
four measurement outcomes are equally likely, each oc-
curring with probability 1/4. Furthermore, after Alice s
measurement, Bob's particle 3 will have been projected
into one of the four pure states superposed in Eq. (5),
according to the measurement outcome. These are, re-
spectively,

—lds) —= —
(t,), ( ~,) its),

Each of these possible resultant states for Bob's EPR
particle is related in a simple way to the original state
IP) which Alice sought to teleport. In the case of the first
(singlet) outcome, Bob's state is the same except for an
irrelevant phase factor, so Bob need do nothing further to
produce a replica of Alice's spin. In the three other cases,
Bob must apply one of the unitary operators in Eq. (6),
corresponding, respectively, to 180' rotations around the
z, x, and y axes, in order to convert his EPR particle into
a replica of Alice's original state IP). (If IP) represents a
photon polarization state, a suitable combination of half-
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First experimental implementation (BB84 protocol)

715,000 pulses → 2000 basis matches → 754 bit of shared key
with eavesdropper having < 10−6 bits of information

“Experimental quantum cryptography,” C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Crypt. 5, 3-28 (1992).

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 12 / 20



First experimental implementation (BB84 protocol)

715,000 pulses → 2000 basis matches → 754 bit of shared key
with eavesdropper having < 10−6 bits of information

“Experimental quantum cryptography,” C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Crypt. 5, 3-28 (1992).

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 12 / 20



Qubit representation

A qubit is represented by a generalized
quantum superposition of two orthonormal
states,

where a and b are complex constants

two qubits are identical if related by a com-
plex constant with modulus 1

1

0

|ψ⟩ = a|0⟩+ b|1⟩, 1 = |a|2 + |b|2

a = |a|e iα, b = |b|e iβ

a|0⟩+ b|1⟩

≡ e iθ(

a′|0⟩+ b′|1⟩

)

the global phase, e iθ of a qubit cannot be
measured but the relative phase, e iϕ can

b

a
=

|b|
|a|

e i(β−α) =
|b|
|a|

e iϕ

changing the relative phase in a superposi-
tion changes the superposition itself

a|0⟩+ b|1⟩ ≠ |a||0⟩+ e iϕ|b||1⟩
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Qubit complex plane

Starting with the general representation of a qubit

we define four additional special orthogonal single
qubit states

the {|+⟩, |−⟩} basis is also called the Hadamard basis
and is sometimes represented by {| →⟩, | →⟩}

|ψ⟩ = e iϕ|a||0⟩+ |b||1⟩
|+⟩ = 1√

2
(|0⟩+ |1⟩) = | →⟩

|−⟩ = 1√
2
(|0⟩ − |1⟩) = | →⟩

|i ⟩ = 1√
2
(|0⟩+ i |1⟩)

|ī ⟩ = 1√
2
(|0⟩ − i |1⟩)

these qubits can be mapped onto the com-
plex plane by defining the mapping

which results in the mappings

a|0⟩+ b|1⟩ 7→ α =
b

a

α 7→ 1√
1 + |α|2

|0⟩+ α√
1 + |α|2

|1⟩

|+⟩ 7→ +1, |−⟩ 7→ −1, |i ⟩ 7→ +i , |ī ⟩ 7→ −i , |0⟩ 7→ 0, |1⟩ 7→ ??

the problem with |1⟩ can be solved by extending the complex plane
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the problem with |1⟩ can be solved by extending the complex plane

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 14 / 20



Qubit complex plane

Starting with the general representation of a qubit

we define four additional special orthogonal single
qubit states

the {|+⟩, |−⟩} basis is also called the Hadamard basis
and is sometimes represented by {| →⟩, | →⟩}

|ψ⟩ = e iϕ|a||0⟩+ |b||1⟩
|+⟩ = 1√

2
(|0⟩+ |1⟩) = | →⟩

|−⟩ = 1√
2
(|0⟩ − |1⟩) = | →⟩

|i ⟩ = 1√
2
(|0⟩+ i |1⟩)
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the problem with |1⟩ can be solved by extending the complex plane

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 14 / 20



Qubit complex plane

Starting with the general representation of a qubit

we define four additional special orthogonal single
qubit states

the {|+⟩, |−⟩} basis is also called the Hadamard basis
and is sometimes represented by {| →⟩, | →⟩}

|ψ⟩ = e iϕ|a||0⟩+ |b||1⟩
|+⟩ = 1√

2
(|0⟩+ |1⟩) = | →⟩

|−⟩ = 1√
2
(|0⟩ − |1⟩) = | →⟩

|i ⟩ = 1√
2
(|0⟩+ i |1⟩)
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|ī ⟩ = 1√
2
(|0⟩ − i |1⟩)

these qubits can be mapped onto the com-
plex plane by defining the mapping

which results in the mappings

a|0⟩+ b|1⟩ 7→ α =
b

a

α 7→ 1√
1 + |α|2

|0⟩+ α√
1 + |α|2

|1⟩

|+⟩ 7→ +1, |−⟩ 7→ −1, |i ⟩ 7→ +i , |ī ⟩ 7→ −i , |0⟩ 7→ 0,
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Extended complex plane

The qubit basis vectors which are properly
mapped can be drawn on a unit circle in the
complex plane

by adding an extra point called ∞ and defining
the mapping: |1⟩ 7→ ∞

since each of the qubit basis vectors are normal-
ized they have a magnitude of 1 the extended
complex plane can be mapped to a sphere of
radius 1

the general qubit can also be represented as a
function of θ and ϕ

1+

i i

1

ii

00

|ψ⟩ = cos
(
θ
2

)
|0⟩+ sin

(
θ
2

)
e iϕ|1⟩ =

(
cos
(
θ
2

)
sin
(
θ
2

)
e iϕ

)
this maps an arbitrary single qubit
state to a point on the surface of the
Bloch sphere
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Spherical coordinates & the Bloch sphere

Given the spherical representation of a gen-
eral qubit, the three basis sets can easily be
mapped onto the surface of the Bloch sphere

|0⟩ = 1|0⟩+ 0|1⟩ 7−→

θ = 0, ϕ = 0

|1⟩ = 0|0⟩+ 1|1⟩ 7−→

θ = π, ϕ = 0

|+⟩ = 1√
2
(|0⟩+ |1⟩) 7−→

θ = π
2 , ϕ = 0

|−⟩ = 1√
2
(|0⟩ − |1⟩) 7−→

θ = π
2 , ϕ = π

|i ⟩ = 1√
2
(|0⟩+ i |1⟩) 7−→

θ = π
2 , ϕ = π

2

|ī ⟩ = 1√
2
(|0⟩ − i |1⟩) 7−→

θ = π
2 , ϕ = 3π

2

|ψ⟩ = cos
(
θ
2

)
|0⟩+ sin

(
θ
2

)
e iϕ|1⟩

0

1

+

i

θ

i

the points in the interior of the Bloch sphere have meaning for quantum information processing
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|ī ⟩ = 1√
2
(|0⟩ − i |1⟩) 7−→

θ = π
2 , ϕ = 3π

2

|ψ⟩ = cos
(
θ
2

)
|0⟩+ sin

(
θ
2

)
e iϕ|1⟩

0

1

+

i

θ

i

the points in the interior of the Bloch sphere have meaning for quantum information processing

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 16 / 20



Spherical coordinates & the Bloch sphere

Given the spherical representation of a gen-
eral qubit, the three basis sets can easily be
mapped onto the surface of the Bloch sphere

|0⟩ = 1|0⟩+ 0|1⟩ 7−→ θ = 0, ϕ = 0

|1⟩ = 0|0⟩+ 1|1⟩ 7−→ θ = π, ϕ = 0

|+⟩ = 1√
2
(|0⟩+ |1⟩) 7−→ θ = π

2 , ϕ = 0

|−⟩ = 1√
2
(|0⟩ − |1⟩) 7−→ θ = π

2 , ϕ = π

|i ⟩ = 1√
2
(|0⟩+ i |1⟩) 7−→

θ = π
2 , ϕ = π

2
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Stereographic projection & the Bloch sphere

An alternative model is that of the stereographic
projection which posits that α = s + it is complex

each of the 6 qubit basis states are mapped as

|0⟩ 7−→

(0, 0, 1)

|1⟩ 7−→

(0, 0,∞) 7−→ (0, 0,−1)

|+⟩ 7−→

(1, 0, 0)

|−⟩ 7−→

(−1, 0, 0)

|i ⟩ 7−→

(0, 1, 0)

|ī ⟩ 7−→

(0,−1, 0)

(s, t) 7→
(

2s

|α|2 + 1
,

2t

|α|2 + 1
,
1− |α|2

|α|2 + 1

)

0
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+

i

θ
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|ī ⟩ 7−→

(0,−1, 0)

(s, t) 7→
(

2s

|α|2 + 1
,

2t

|α|2 + 1
,
1− |α|2

|α|2 + 1

)
0

1

+

i

θ

i

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing January 13, 2022 17 / 20



Stereographic projection & the Bloch sphere

An alternative model is that of the stereographic
projection which posits that α = s + it is complex

each of the 6 qubit basis states are mapped as

|0⟩ 7−→ (0, 0, 1)

|1⟩ 7−→ (0, 0,∞) 7−→ (0, 0,−1)

|+⟩ 7−→ (1, 0, 0)

|−⟩ 7−→ (−1, 0, 0)

|i ⟩ 7−→

(0, 1, 0)
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Direct sum of vector spaces

Consider two classical state spaces, V and W with bases

A = {|α1⟩, |α1⟩, . . . , |αn⟩}, B = {|β1⟩, |β1⟩, . . . , |βm⟩}

the combined state space of these two state spaces is obtained through a direct sum, V ⊕W
with basis

A ∪ B = {|α1⟩, |α1⟩, . . . , |αn⟩, |β1⟩, |β1⟩, . . . , |βm⟩}

every element |x⟩ ∈ V ⊕W can be written as |x⟩ = |v⟩ ⊕ |w⟩, where |v⟩ ∈ V and |w⟩ ∈ W

addition and scalar multiplication are done on the component systems separately and then
adding results and inner products are performed as

(⟨v2| ⊕ ⟨w2|) (|v1⟩ ⊕ |w1⟩) = ⟨v2|v1⟩+ ⟨w2|w1⟩

thus, for a system of n two-state objects, the dimension of the state space of the system is 2n,
linear with the number of objects
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the combined state space of these two state spaces is obtained through a direct sum, V ⊕W
with basis

A ∪ B = {|α1⟩, |α1⟩, . . . , |αn⟩, |β1⟩, |β1⟩, . . . , |βm⟩}

every element |x⟩ ∈ V ⊕W can be written as |x⟩ = |v⟩ ⊕ |w⟩, where |v⟩ ∈ V and |w⟩ ∈ W

addition and scalar multiplication are done on the component systems separately and then
adding results and inner products are performed as

(⟨v2| ⊕ ⟨w2|) (|v1⟩ ⊕ |w1⟩) = ⟨v2|v1⟩+ ⟨w2|w1⟩

thus, for a system of n two-state objects, the dimension of the state space of the system is 2n,
linear with the number of objects
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Tensor product of vector spaces

Quantum systems, such as qubits combine as tensor products so for V and W with bases

A = {|α1⟩, |α2⟩, . . . , |αn⟩}, B = {|β1⟩, |β2⟩, . . . , |βm⟩}

the tensor product V ⊗W is an n ×m-dimensional space consisting of elements |αi ⟩ ⊗ |βj⟩

operations on such a vector space are now:

(|v1⟩+ |v2⟩)⊗ |w⟩ = |v1⟩ ⊗ |w⟩+ |v2⟩ ⊗ |w⟩
|v⟩ ⊗ (|w1⟩+ |w2⟩) = |v⟩ ⊗ |w1⟩+ |v⟩ ⊗ |w2⟩

(a|v⟩)⊗ |w⟩ = |v⟩ ⊗ (a|w⟩) = a (|v⟩ ⊗ |w⟩)

for k = min(n,m), all elements of V ⊗W have the form

|v1⟩ ⊗ |w1⟩+ |v2⟩ ⊗ |w2⟩+ · · ·+ |vk⟩ ⊗ |wk⟩

the ⊗ symbol will often be dropped with the understanding that the tensor product is always
implied: |v⟩ ⊗ |w⟩ → |v⟩|w⟩
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More about tensor products

The inner product of V ⊗W is

(⟨v2| ⊗ ⟨w2|) · (|v1⟩ ⊗ |w1⟩) = ⟨v2|v1⟩⟨w2|w1⟩

the tensor product of two unit vectors is also a unit vector, and given orthonormal bases
{|αi ⟩} and {|βj⟩} for V and W , the basis {|αi ⟩} ⊗ {|βj⟩} for V ⊗W is also orthonormal

the tensor product of n 2-dimensional vector spaces has dimension 2n

most vectors |u⟩ ∈ V ⊗W cannot be written as the tensor product of |v⟩ ∈ V and |w⟩ ∈ W
these are so-called entangled states and are of fundamental importance to quantum computing

for entangled states, it is meaningless to discuss the state of a single qubit that is part of the
system
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