
PHYS 407 - Introduction to Quantum Computing

Term: Spring 2022
Meetings: Tuesday & Thursday 17:00-18:15
Location: Room 240 Pritzker Science
Video: All sessions recorded for online viewing

Instructor: Carlo Segre
Office: 166D/172 Pritzker Science
Phone: 312.567.3498
email: segre@iit.edu

Book: Quantum Computing: A Gentle Introduction,
E. Rieffel & W. Polak (MIT Univ Press, 2011)

Web Site: http://phys.iit.edu/∼segre/phys407/22S
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Course objectives

1. Clearly describe the building blocks of quantum computing.

2. Apply tools of quantum computing to manipulate qubits.

3. Clearly describe the fundamental hardware used to realize quantum computers.

4. Clearly describe the purpose and realization of quantum gates.

5. Use the concept of quantum entanglement to develop quantum algorithms.

6. Clearly describe the techniques of quantum error correction and fault tolerance.

7. Build quantum algorithms using IBM Qiskit.
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Course grading (tentative!)

30% – Homework assignments

Weekly, due at beginning of class
Turned in via Blackboard

40% – Exams?

30% – Final examination/project?

Grading scale
A – 88% to 100%
B – 75% to 88%
C – 62% to 75%
D – 50% to 62%
E – 0% to 50%
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Topics to be covered (chapter titles)

1. Quantum building blocks

2. Quantum algorithms

3. Entagled subsystems and robust computation

4. Quantum computing hardware

5. Other topics as appropriate
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Why study quantum computing?

Quantum computing is one part of a broader field called quantum informa-
tion science which has revolutionized cryptography and secure communica-
tions

Quantum computing can provide solutions to problems that are computa-
tionally expensive using digital computers

Quantum computing error correction and fault tolerance has made the tech-
nology practical

Companies are beginning to build practical quantum computers with many
qubits

Quantum computing is becoming interesting to a number of fields outside
physics and could be even more relevant in the near future
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A bit about me. . .

B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign (1976)

Ph.D. in Physics, University of California, San Diego (1981)

Illinois Tech Faculty member since 1983

Have held administrative positions as Associate Chair, Associate Dean, and most
recently Interim Chair of Chemistry Dept.

Currently Academic Advisor for Applied Physics Program, Society of Physics Stu-
dents, and CAURS-IIT

Director of Center for Synchrotron Radiation Research & Instrumentation, Deputy
Director of Materials Research Collaborative Access Team, Board Member, Sigma
Xi, The Scientific Research Society & International Center for Diffraction Data

For fun: Debian GNU/Linux Developer, Illinois Tech Representative & Super
Moderator on CollegeConfidential
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. . . and bit more

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego

1983 – joined Illinois Tech Faculty

2006 – elected Fellow International Center for Diffraction Data

2011 – appointed Duchossois Leadership Professor of Physics

2013 – elected Fellow American Association for the Advancement of Science

2014 – Co-founder and current CTO of Influit Energy startup

2016 – Elected to National Board of Sigma Xi the Scientific Research Society

2020 – Elected to Board of International Center for Diffraction Data
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MRCAT

• Materials Research Collaborative Access Team

• Specializing in x-ray absorption spectroscopy for
local structure & electronic measurements

• Focus on in situ experiments at time scales from
10 s to 2 min

Current active membership

Illinois Tech

Argonne Chem. Sci. & Eng.

Argonne Biosciences

EPA Cincinnati

UOP Honeywell

BP p.l.c.
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My research in fuel cell catalysts. . .

Mechanistic studies of catalysts
by EXAFS
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“In situ Ru K-edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model
submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and
C.U. Segre, J. Phys. Chem. C 117, 18904-18912 (2013).
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. . . and battery materials

EXAFS studies of battery ma-
terials
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“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion
batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 1702134 (2018).
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“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion
batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 1702134 (2018).
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The company . . . Influit Energy, LLC
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Today’s outline - January 11, 2022

• Quantum fundamentals

• Superposition

• Dirac notation

• Qubits & linear algebra

• Quantum postulates

• Quantum key distribution

Reading Assignment: Chapter 2.4-2.5; Chapter 3.1

Homework Assignment #01:
Chapter 2:1,2,3,5,6,11
due Thursday, January 20, 2022
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Quantum mechanics fundamentals

A quantum computer is built of qubits which consist of physical systems which have two
measureable states

a simple example of such a system is the polariza-
tion of a photon

consider an unpolarized beam of light from a laser
pointer prepared in the vertical polarization by a
filter

a detector for the vertical state will detect the full
beam intensity, a detector for the horizontal state
will detect nothing

Detector

Source

if a tilted polarizer is placed in between, the horizontal detector now measures a smaller, but
non-zero, value

because photons are quantum particles, this effect works even for single photons with the
measuring a fraction of the photons to be horizontal
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Superposition of states

The state of a single photon can be rep-
resented generalized quantum superposition
of the | →⟩ and |→⟩ states

where the amplitudes a and b are complex
constants such that the state is normalized

 

 

a
b

|v⟩ = a| →⟩+ b|→⟩,

|v |2 ≡ 1 −→ |a|2 + |b|2 = 1

a = |a|e iα, b = |b|e iβ

suppose a photon in a general state |v⟩ en-
ters a detector whose direction is | →⟩

the probability of detection is |a|2 and the
probability of absorption is |b|2

this formalism allows us to describe the po-
larization experiment
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Polarizer experiment

The photons that come from the source are in a
state | →⟩

in the axes of the polarizer P there are two possible
states | →⟩ and | →⟩ and the vertically polarized
photon can be written as

| →⟩ = 1√
2
| →⟩+ 1√

2
| →⟩

the photon thus has an 0.5 probability of passing
through the polarizer and will then be in a state

| →⟩ = 1√
2
| →⟩+ 1√

2
|→⟩

Detector

Source

P

again there is only an 0.5 probability of the photon passing so an initial photon will have a
probability of 0.5× 0.5 = 0.25 of making it to the detector

quantum particles (and qubits) behave probabilistically
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Dirac notation

Any two-state quantum system can be considered a qubit and can be modeled as a
superposition of the two linearly independent states

|q⟩ = a|0⟩+ b|1⟩, a = |a|e iα, b = |b|e iβ

Examples include photon polarization, electron spin, and ground/excited states of atoms

The infinte number of possible states in this system can all be described by the linear
superposition |q⟩

Dirac, or bra-ket, notation is used to describe quantum systems. The ket (|x⟩) and bra (⟨x |)
are used to represent a vector and its conjugate transpose respectively

A complex vector space V is generated by a set of vectors, S , if every |v⟩ ∈ V can be written
as a complex linear superposition of the vectors in the set

|v⟩ = a1|s1⟩+ a2|s2⟩+ · · ·+ an|sn⟩, |si ⟩ ∈ S , ai = |ai |e iφi
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Dirac notation (cont.)

The span of S is the subspace of all linear combinations of vectors in S

A basis, B, is a set of vectors for which every element of V can be written as a unique linear
combination of vectors |b⟩ ∈ B

In a two-dimensional space suchs as a qubit, any two vectors which are not multiples of each
other and are orthonormal form a basis

For polarized photons, {| →⟩, |→⟩}, {| →⟩, | →⟩}, and {| ⟳⟩, | ⟲⟩} are all valid basis sets

Operations on the vector space V include the inner
(scalar, dot) product ⟨v2|v1⟩ with properties

⟨v |v⟩ = Re{⟨v |v⟩} > 0

⟨v2|v1⟩ = ⟨v1|v2⟩
(a⟨v2|+ b⟨v3|)|v1⟩ = a⟨v2|v1⟩+ b⟨v3|v1⟩

A basis set B = {|β1⟩, |β2⟩, . . . |βn⟩}
is said to be orthonormal if

⟨βi |βj⟩ =

{
1 i = j

0 i ̸= j
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Vector representation of a qubit

In order to represent a qubit, it is necessary to select a standard basis set, {|0⟩, |1⟩}, of two
orthonormal vectors

The specific physical states used for this standard basis is not important but must remain fixed

In quantum information processing, the {|0⟩, |1⟩} basis has a direct correspondence to the
classical 0 and 1 bits

The major difference is that qubits can take on an infinite number of superpositions of |0⟩ and
|1⟩

For a basis {|β1⟩, |β2⟩}, an arbitrary ket |v⟩ can be written as a vector in the language of
linear algebra

|v⟩ = a|β1⟩+ b|β2⟩ −→ v =

(
a
b

)
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Similarity to linear algebra

The ket, |α⟩, corresponds to a column
vector, α, in linear algebra

while a bra
⟨α| is its conjugate transpose, α†, a
row vector

The inner product of two vectors is

Gates are just operators that act on
vectors as linear transformations.

In the standard basis, {|0⟩, |1⟩}, the
vector |v⟩ = a|0⟩+ b|1⟩ is

|α⟩ =

 a1
...
an

 , ⟨α| = (a1 · · · an)

⟨α|β⟩ = (a1 · · · an)

 b1
...
bn

 =
n∑

i=1

aibi

G |α⟩ =

 g11 · · · g1n
...

...
gn1 · · · gnn


 a1

...
an


|0⟩ =

(
1
0

)
, |1⟩ =

(
0
1

)
, |v⟩ =

(
a
b

)
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