Phase shift analysis vV

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il Phase shift analysis



Phase shift analysis vV

® Review of partial wave analysis

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il Phase shift analysis



Phase shift analysis vV

® Review of partial wave analysis

® The phase shift approach

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il Phase shift analysis



Phase shift analysis vV

® Review of partial wave analysis
® The phase shift approach
® Phase shifts in 1D & 3D

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il Phase shift analysis



Phase shift analysis

Carlo Segre (lllinois Tech)

Review of partial wave analysis
The phase shift approach
Phase shifts in 1D & 3D

Phase shift - partial wave equivalence

PHYS 406 - Fundamentals of Quantum Theory Il

Phase shift analysis



Review of partial wave method

Solve the Schrodinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics
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Review of partial wave method i

Solve the Schrodinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics

¥(r,0,0) = R(r)Y/"(0, 0), u(r) = rR(r)
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Review of partial wave method 3

Solve the Schrodinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics

¥(r,0,0) = R(r)Y/"(0, 0), r) = rR(r)

u(
w2 d2y 2 1(1+1)
a4l vV o

2m dr? v+ 2m  r?

Eu =
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Review of partial wave method 7

Solve the Schrodinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics then breaking it up into

three domains
¥(r,0,9) = R(r)Y|"(0,9), r) = rR(r)
u

u(
w2 d2y 2 1(1+1)
Eu= 298y 4 22
Y 2m dr? v+ 2m  r?
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Review of partial wave method NG

Solve the Schrodinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics then breaking it up into

three domains
¥(r,0,9) = R(r)Y|"(6, ¢), r) = rR(r)
u

u(
w2 d2y 2 1(1+1)
Eu= 298y 4 22
Y 2m dr? v+ 2m  r?

Radiation zone - simple spherical wave solution holds for the
scattered wave superposed to incoming plane wave
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Review of partial wave method NS

Solve the Schrodinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics then breaking it up into

three domains
¥(r,0,9) = R(r)Y|"(6, ¢), u(r) = rR(r)
h? d%u v K2 I(1+1)

Eu—=-121Y
Y 2m dr? v+ 2m  r?

Radiation zone - simple spherical wave solution holds for the
scattered wave superposed to incoming plane wave

Intermediate region - only include centrifugal term gives solu-
tions based on Hankel functions
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Review of partial wave method NS

Solve the Schrodinger equation for scattering from a central potential by separating the

scattered wave into a radial function and the spherical harmonics then breaking it up into
three domains

¥(r,0,90) = R(r)Y/"(6, ¢), u(r) = rR(r)
R [ BRI+ 1)

Eu—=-121Y
Y 2m dr? v+ 2m  r?

Radiation zone - simple spherical wave solution holds for the
scattered wave superposed to incoming plane wave

Intermediate region - only include centrifugal term gives solu-
tions based on Hankel functions

Scattering region - no approximations applied must solve full
potential
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Partial wave solutions A

P2 du [, BI04

U(r0.0) = ROVY(0.0).  u(r) = R(),  Eu=— 20+ V() + 52
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Partial wave solutions A

P2 du [, BI04

U(r0.0) = ROVYP(0.0).  u(r) = R(r),  Eu=— 120+ V() + 52

Radiation zone — ignore V/(r) and centripital potential
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Partial wave solutions

h2 d2
P(r,0,¢0) = R(r)Y™(0,9), u(r)=rR(r), Eu= _ﬂdjg

Radiation zone — ignore V/(r) and centripital potential

. ikr
b A [e'kz + f(H)er }
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Partial wave solutions i

h? d?u B2 (1 +1)
“omdr [V(’“zm ”

o(r.0,90) = R(r)Y/"(0,0),  u(r) =rR(r), Eu=

Radiation zone — ignore V/(r) and centripital potential

. ikr
b A [e'kz + f(H)er }

Intermediate region — ignoring V/(r) the solution has the Radiation zone form as r — oo
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Partial wave solutions i

n2 d2u [V(r)+hz/(/+1)

o(r.0,90) = R(r)Y/"(0,0),  u(r) =rR(r), Eu=

2mdr? 2m  r2

Radiation zone — ignore V/(r) and centripital potential

. ikr
b A [e'kz + f(H)er }

Intermediate region — ignoring V/(r) the solution has the Radiation zone form as r — oo

b= A

e 4 k Z "2l + 1)a/h§1)(kr)Pl(cos 9)]
1=0
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Partial wave solutions i

R I(141)
2m  r?

P(r,0,0) = R(r)Y"(0,9), u(r)=rR(r), Eu= —fiﬂ + [V(r) +

2m dr?

Radiation zone — ignore V/(r) and centripital potential

. ikr
b A [e'kz + f(e)er }

Intermediate region — ignoring V/(r) the solution has the Radiation zone form as r — oo

b= A

e 4 k Z "2l + 1)a/h§1)(kr)Pl(cos 9)]
1=0

— AN i'21+1) [J, kr) + ikash* (kr)} P)(cos 8)
1=0
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Partial wave solutions i

W(r,0,0) = R(r)Y™6,), u(r)=rR(r), Eu= B2 d?u [V(r)—l— M2 I(I+1)

2mdr? 2m  r2

Radiation zone — ignore V/(r) and centripital potential

b A [e"kz +£(0) eikr}

r

Intermediate region — ignoring V/(r) the solution has the Radiation zone form as r — oo

b= A

e 4 k Z "2l + 1)a/h§1)(kr)Pl(cos 9)]
1=0

— AN i'21+1) [j,(kr) + fka,hfl)(kr)} Py(cos 0)
I=0
Scattering region — include full potential and match to Intermediate region with incoming
plane wave expanded in partial waves
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Phase shift approach V

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential
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Phase shift approach V

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = h2k2/2m
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Phase shift approach V

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = h2k2/2m

This is completely equivalent to the calculation of scattering amplitudes, f, as can be seen in
the 1D example
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Phase shift approach V

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = h2k2/2m

This is completely equivalent to the calculation of scattering amplitudes, f, as can be seen in
the 1D example

by = A (eikx i fefikx>
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Phase shift approach V

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = h2k2/2m

This is completely equivalent to the calculation of scattering amplitudes, f, as can be seen in
the 1D example

by = A (eikx i fefikx> by = A (eikx _ e2i6efikx>
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Phase shift approach \ 7

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = h2k2/2m

This is completely equivalent to the calculation of scattering amplitudes, f, as can be seen in
the 1D example

by = A (eikx i fefikx> by = A (eikx _ eZidefikx>

This approach simplifies the mathematics and is an elegant way to describe the physics: the
potential can only shift the phase of the scattered wave
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Phase shift approach \ 7

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = h2k2/2m

This is completely equivalent to the calculation of scattering amplitudes, f, as can be seen in
the 1D example

by = A (eikx i fefikx> by = A (eikx _ eZidefikx>

This approach simplifies the mathematics and is an elegant way to describe the physics: the
potential can only shift the phase of the scattered wave

We can show how the phase shift approach is applied to a 1D case, then the more general 3D
case where it is equivalent to partial wave description
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we

can write the incident
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we
can write the incident

Vi(x) = Aet®™ x < —a
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we

can write the incident and reflected waves far from
the non-zero potential

| B ||||||
Yi(x) = Aet™ x < —a

)

A\
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we

can write the incident and reflected waves far from
the non-zero potential

B ||||||
Yi(x) = Aet™ x < —a
Yr(x) = Be ™, x< —a |||||| AKX

)

A\
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we
can write the incident and reflected waves far from

the non-zero potential

Vi(x) = Aet®™ x < —a

U (x) =Be ™ x< —a

if V =0 for x < 0, the full solution is simply the

sum of the two and with the boundary condition

A

1o(0) = 0, B = —A and we can write the full

solution
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we
can write the incident and reflected waves far from

the non-zero potential

Vi(x) = Ae™™ x < —a

U (x) =Be ™ x< —a

if V =0 for x < 0, the full solution is simply the

sum of the two and with the boundary condition

A

1o(0) = 0, B = —A and we can write the full

solution

Po(x) = A (eka _ e—ikx)
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we
can write the incident and reflected waves far from
the non-zero potential

Vi(x) = Aet®™ x < —a

U (x) =Be ™ x< —a

if V =0 for x < 0, the full solution is simply the
sum of the two and with the boundary condition
1o(0) = 0, B = —A and we can write the full
solution

Po(x) = A (eka _ e—ikx)

A

-a 0o X

with a V/(x) # 0, the reflected wave
will gain a phase shift, 2§, from
traversing the region —a < x < 0
twice and the solution becomes

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il Phase shift analysis



Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we
can write the incident and reflected waves far from
the non-zero potential

Vi(x) = Aet®™ x < —a
U (x) =Be ™ x< —a
if V =0 for x < 0, the full solution is simply the
sum of the two and with the boundary condition
1o(0) = 0, B = —A and we can write the full
solution
wO(X) — A (eikx o e—ikx)
Dbu(x) = A (eikx _ efikxe2i6)

A

-a o X

with a V/(x) # 0, the reflected wave
will gain a phase shift, 2§, from
traversing the region —a < x < 0
twice and the solution becomes
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Phase shifts in 3-D vV

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0
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Phase shifts in 3-D V

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

o0
o = Ae¥? = Z¢(()')
1=0
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Phase shifts in 3-D V

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

Yo = Ae™ =57yl =57 Ail(21 + 1))i(kr) Pi(cos §)
1=0 1=0
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Phase shifts in 3-D V

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

Yo = Ae™ =57yl =57 Ail(21 + 1))i(kr) Pi(cos §)
1=0 1=0

each partial wave with a specific total angular momentum scatters independently
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Phase shifts in 3-D V

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

= Ae¥? = Z% = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a specific total angular momentum scatters independently

) = 5 [A90) + H o)
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Phase shifts in 3-D V

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

= Ae¥? = Z% = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a speC|f|c total angular momentum scatters independently
and for x > 1 and V(r) =

i) =3 [h“>( )+ H ()]
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Phase shifts in 3-D

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

= Ae¥? = Z% = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a specific total angular momentum scatters independently
and for x > 1 and V(r) =

<

. 1 1 2 1 B
Jix) =5 [+ BP)] ~ o (-1 e e
2 2x
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Phase shifts in 3-D V

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

= Ae¥? = Z% = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a speC|f|c total angular momentum scatters independently
and for x > 1 and V(r) =

i) =3 {h(”( )+ h2 (0] =

thus, for the /™" partial wave, at large r

L

1)l+1 IX_|_ I+1 —ix
2x [(
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Phase shifts in 3-D
Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

Ad”——§:¢o = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a specific total angular momentum scatters independently
and for x > 1 and V(r) =

Mmzékummﬁuﬂz

thus, for the /™" partial wave, at large r

(N (21+1) T ke
Vo R AT F

L

1)l+1 IX_|_ I+1 —ix
2x [(

- (—1)'e"‘kr} Pi(cos9), V(r)=0
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Phase shifts in 3-D

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

= Ae¥? = Z% = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a specific total angular momentum scatters independently
and for x > 1 and V(r) =

<

: _ 1 (1) (2) ~ i 1+1 IX l+1 —ix
i) = 5 [0 + BP0 & o (-1 e 4
thus, for the /™" partial wave, at large r
20+ 1 e
o) ~ Al o ) [ —(~1)e k} P)(cos ), V(r) =0

the second term is an incoming spherical wave
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Phase shifts in 3-D

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

= Ae¥? = Z% = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a specific total angular momentum scatters independently
and for x > 1 and V(r) =

<

: _ 1 (1) (2) ~ i 1+1 IX l+1 —ix
i) = 5 [0 + BP0 & o (-1 e 4
thus, for the /™" partial wave, at large r
0 (2/ +1) I —ikr _
o) m AT M — (<1)e M| Pcost),  V(r) =0

the second term is an incoming spherical wave and the first is the outgoing wave which is
phase-shifted by d; when there is a non-zero potential
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Phase shifts in 3-D

Recall that the incident plane wave can be expressed as a sum of partial waves with m =0

Ad”——§:¢o = Ai'(21 + 1)ji(kr)Pi(cos )

1=0
each partial wave with a specific total angular momentum scatters independently
and for x > 1 and V(r) =

Mmzékummﬁuﬂz

thus, for the /™" partial wave, at large r

¢(()/) ~ (2;1‘;; 1) [ —(-1)e —’k’} P;(cos6), V(r)=0

the second term is an incoming spherical wave and the first is the outgoing wave which is
phase-shifted by d; when there is a non-zero potential

P ~ A(zéidltrl) [e"krez"‘;’ - (—1)Ie7"k'} Pi(cos®), V(r)#0
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Connection between a; and ¢, A

Comparing this result
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Connection between a; and ¢, VYV
Comparing this result

1/}(,) s AQ;/L ) [eikre2i6, - (_l)lefikr P/(COS@)
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Connection between a; and ¢, V'
Comparing this result with the general solution by partial waves

1/}(/) s A(2£i‘l’(‘r ) [eikre2i6, - (_1)Iefikr P/(COS@)
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Connection between a; and ¢,

Comparing this result with the general solution by partial waves

1/}(/) ~ A(QQI.L ) [eikre2i6, B (_1)lefikr} P)(cos 6)
() QI+ T w va—ike] , (2141)
v NA{ 2ikr [e (=1)e }Jr r
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Connection between a; and ¢,

Comparing this result with the general solution by partial waves
not cancel

W) ~ AQ;LI) [eikre2i6, _ (_l)lefikr} Py(cos )
]
() I+1) [ va—ike] , (21+1)
v NA{ 2ikr [e (=1)e }Jr r

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il
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Connection between a; and ¢, V'

Comparing this result with the general solution by partial waves and keeping the terms that do
not cancel

W) ~ AQ;LI) [eikre2i6, _ (_1)Iefikr} Py(cos )
I
2041) 1 4, ik 204+1)
v ~ A{(2/kr) [ek —(-1e k} + ( . )a/ek }P,(cos&)

2/ + 1)ezi5,eikr (21 + 1)eikr n (2l + 1)aleikr

2ikr 2ikr r
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Connection between a; and ¢, V'

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel
(214+1)

2ikr

b0~ A { (2/+1) [eikr _ (_1)le—ikr} n 2/ + 1)a/eikr} Py(cos )

()~ A [eik’e2i5’ - (—1)'e7"k’} Pi(cos )

2ikr r

RIHT) o5, g 2IHT) yr  24T) ys
Tk/e”ﬁﬂ/* 2iky ot I 26"
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Connection between a; and ¢, V'

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel
(214+1)

2ikr

2041) 1 4, ik 204+1)
¢(I)%A{(2ikr)[ek —(-1e k}—k( . )a/ek}P/(cose)

RIHT) o5, g 2IHT) yr  24T) ys
‘5?7786?*1’ 2%//¢M+_ I 26"

1 7 o
- _ 1)
a mk<e

()~ A [eik’e2i5’ - (—1)'e7"k’} Pi(cos )
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Connection between a; and ¢, \ i

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel
(214+1)

2ikr

b0~ A { (2/+1) [eikr B (_1)le—ikr} n 2/ + 1)a/eikr} Py(cos )

()~ A [eik’e2i5’ - (—1)'e7"k’} Pi(cos )

2ikr r
Qﬁezié,wzmﬁﬂé_i_walﬁﬂ(
2iky 2iky /
i _ =iy

1 7 o 1 i€
= — — 1) = — o - -
A= ok <e P 2i
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Connection between a; and ¢, \ i

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel
(214+1)

2ikr

b0~ A { (2/+1) [eikr B (_1)le—ikr} n 2/ + 1)a/eikr} Py(cos )

()~ A [eik’e2i5’ - (—1)'e7"k’} Pi(cos )

2ikr r
M 2i8; Jkf __ M ikt M [kf
2iky © P = 2iky 2t / 216"
]. 2i6 ]. i5 eié, — e_i6l 1 iS5 -
= — ! — 1) = — o - - = — 19
= Dk <e P 2 K& sin(on)
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Connection between a; and ¢, \ i

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel
(214+1)

2ikr

b0~ A { (2/+1) [eikr B (_1)le—ikr} n (21 + 1)a/eikr} Py(cos )

()~ A {e"k’e%‘;’ - (—1)'e7"k’} Pi(cos )

2ikr r

Me2i6,ﬁﬂ4:MﬁM+Malﬁﬂ4
2iky 2iky /
]. 2i6 ]. i5 eié, — e_i6l 1 iS5 -
= 2ik (e k€ 2i g€ sinCon)
then, following the partial wave calculation, the scattering factor and total cross-section
become
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Connection between a; and ¢, \ i

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel
(214+1)

2ikr
¢(/) ~ A (2/ + 1) [eikr . (_1)le—ikr} + (2/ + 1)aleikr P/(COSG)
2ikr r
Qﬁem&ﬁﬂ(:mﬁ%_i_walﬁﬂ(
2iky 2iky /
1 ) 1 . i6 _ o—id 1 .
=5 <e2"5’ - 1) = Ee’5’7e 2/,6 = ;e"s’ sin(d)

then, following the partial wave calculation, the scattering factor and total cross-section
become

()~ A {e"k’e%‘;’ - (—1)'e7"k’} Pi(cos )

f(0) = %2(2/ +1)e' sin(8;) Py(cos 0),

1=0
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Connection between a; and ¢, \ i

Comparing this result with the general solution by partial waves and keeping the terms that do

not cancel ( )
2/ +1

N g ps "7

¥ 2ikr

21 +1 - . 2/ +1 .
¢(/) ~ A {( 2I_|k_r ) [e/kr . (_1)le—1kr} + ( ;" )alelkr} P/(COSG)
M 215/)211/ Mﬁﬂ/‘i‘ M M
2iky 2iky /
1 ) 1 . i6 _ o—id 1 .
=5 <e2"5’ - 1) = Ee’5’7e 2/,6 = ;e"s’ sin(d)
then, following the partial wave calculation, the scattering factor and total cross-section
become

[eikre2i§/ _ (_1)lefikr} P/(cos 8)

f(0) = %2(2/ + 1)ei5/ sin(d;)Py(cos ), —Z Z 21 +1) sm (67)
=0 =0
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The integral Schrodinger equation A

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il The integral Schrédinger equation



The integral Schrodinger equation V'

® Development of the integral equation
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The integral Schrodinger equation V'

® Development of the integral equation

® Green's functions
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The integral Schrodinger equation \4

® Development of the integral equation
® Green's functions

® |ntegrating the Green’s function
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Integral form of the Schrodinger equation A\

Starting with the time-independent Schrodinger
equation
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Integral form of the Schrodinger equation A\

2
Starting with the time-independent Schrodinger Eq = _iv2w+ Vi
equation 2m
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Integral form of the Schrodinger equation A\

2
Starting with the time-independent Schrodinger Ey = _iv2¢ + Vo
equation and rewriting it in a more compact form 2m
using
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Integral form of the Schrodinger equation A\

2
Starting with the time-independent Schrodinger Ey = _iv2¢ + Vo
equation and rewriting it in a more compact form 2m
using
2mE
k=
h )
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Integral form of the Schrodinger equation

Starting with the time-independent Schrédinger Eyp=—

equation and rewriting it in a more compact form
using

vV2mE 0 2—,;”Vw

k
h h

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il
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Integral form of the Schrodinger equation 7

2
Starting with the time-independent Schrodinger Ey = _2iv2¢ + Vo
equation and rewriting it in a more compact form m
using
v2mE 2m Q= (Vz + k2) ¥
k= P Q= ﬁvw
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Integral form of the Schrodinger equation N

Starting with the time-independent Schrodinger
equation and rewriting it in a more compact form
using
v2mE
h

if we can find a solution of this equation, G(¥), for
a delta function source

k=

2m
: ozﬁvw
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Integral form of the Schrodinger equation NG

Starting with the time-independent Schrodinger
equation and rewriting it in a more compact form

using
k:,/sz szﬂvw Q= (Vi+k)
I T R?
if we can find a solution of this equation, G(F), for 5*(7) = (V2 + k) G(F)
a delta function source
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Integral form of the Schrodinger equation NG

Starting with the time-independent Schrodinger Ey = _2hzv2¢ + V)
equation and rewriting it in a more compact form m
using
k:\/sz szﬂVw Q= (V24K
I T K2
if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7)

a delta function source then the solution to the
actual source, Q, becomes
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Integral form of the Schrodinger equation NG

2
Starting with the time-independent Schrodinger Ey = _2h7v2¢ + Vo
equation and rewriting it in a more compact form m
using

k:\/sz szﬂVw Q= (V24K
I T R?

if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7)
a delta function source then the solution to the 5
actual source, @, becomes Y(F) = / G(7 - 1) Q(r) d°f
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Integral form of the Schrodinger equation i

2
Starting with the time-independent Schrodinger Ey = _2iv2¢ + V)
equation and rewriting it in a more compact form m
using
k:\/sz o=2—’"vw Q= (V24K
I T R?
if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7)
a delta function source then the solution to the 5
actual source, @, becomes Y(F) = / G(7— 1) Q(R) d°Fo

and this satisfies the Schrodinger equation
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Integral form of the Schrodinger equation i

2
Starting with the time-independent Schrodinger Ey = _2iv2¢ + V)
equation and rewriting it in a more compact form m
using
k:‘/sz o=2—’"vw Q= (V24K
I T R?
if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7)
a delta function source then the solution to the 5
actual source, @, becomes Y(F) = / G(7— 1) Q(R) d°Fo

and this satisfies the Schrodinger equation

(V2 1) 0(7) = [ [(V2+ 1) 6(7 - )] Qi) &7
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Integral form of the Schrodinger equation i

2

Starting with the time-independent Schrodinger Ey = _2h7v2¢ + Vo
equation and rewriting it in a more compact form m
using

2mE 2m Q= (V2 + k2) (0

k= ==V

Q= Vi
if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7)
a delta function source then the solution to the 5
actual source, @, becomes /G Q(r) d°f

and this satisfies the Schrodinger equation
(V2482 07 = [ [(74 ) 67 7)] Q) ¢*F

/53 H ro) d3
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Integral form of the Schrodinger equation i

2
Starting with the time-independent Schrodinger Ey = _2h7v2¢ + Vo
equation and rewriting it in a more compact form m
using
k:\/sz szﬂVw Q= (V24K
I T R?
if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7)
a delta function source then the solution to the 5
actual source, @, becomes Y(F) = / G(7 - 1) Q(r) d°f

and this satisfies the Schrodinger equation
(V2482 07 = [ [(74 ) 67 7)] Q) ¢*F
= [#(- me@ ¢ = o)
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Integral form of the Schrodinger equation i

2

Starting with the time-independent Schrodinger Ey = _2iv2¢ + V)
equation and rewriting it in a more compact form m
using

2mE 2m Q= (V2 + k2) (0

k= ==V

Q= Vi
if we can find a solution of this equation, G(7), for 53(7) = (V2 + k2) G(7
a delta function source then the solution to the 5
actual source, @, becomes Y(F) = / G(7— 1) Q(R) d°Fo

and this satisfies the Schrodinger equation
(V2482 07 = [ [(74 ) 67 7)] Q) ¢*F
/53 (F— 1) Q(R) d3% = Q(F) = ’:v¢(7)
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Green's functions \ i

G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source
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Green's functions

G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source
by determining the Green's function, we can solve the differential equation’s response to an

arbitrary source using a simple integral equation
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source
equation for the Green's function
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green's function
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Green'’s functions \ i

G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green's function which can be
done by taking a Fourier transform
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green'’s function which can be I B o 3
done by taking a Fourier transform 6(r) = (27)3/2 e™'g(s)d’s
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green'’s function which can be I B o 3
done by taking a Fourier transform 6(r) = (27)3/2 e™'g(s)d’s

(V2 + K?) G(F) = (273)3/2/ {(v2 + k?) e,'g'.?] g(3) %
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green'’s function which can be I B o 3
done by taking a Fourier transform 6(r) = (27)3/2 e™'g(s)d’s

(V2 + k%) G(F) = (273)3/2/ {(v2 + k?) e,'g'.?] g(3) %
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green'’s function which can be I B o 3
done by taking a Fourier transform 6(r) = (27)3/2 e™'g(s)d’s

(V2 + k%) G(F) = (273)3/2/ {(v2 + k?) e,'g'.?] g(3) %

53(7) =
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green'’s function which can be I B o 3
done by taking a Fourier transform 6(r) = (27)3/2 e™'g(s)d’s

(V2 + k%) G(F) = (273)3/2/ {(v2 + k?) e,'g'.?] g(3) %

53(7) =
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Green's functions \ i
G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for.the Green.’s function which can be 7) = 1 ig'?g(§) &3
done by taking a Fourier transform (27)3/2

(V2 + k%) G(F) = (273)3/2/ {(vz + k?) e,'g'.?] g(3) %

(=)
w
—~~
!
~—

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il The integral Schrédinger equation



Green's functions

G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for.the Green.’s function which can be 7) = 1 ig'?g(§) &3
done by taking a Fourier transform (27)3/2

(V2 4+ k%) G(F) = =273

1 B Bz 3m _ _ L
o | & PI=P0= G
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Green's functions

G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for.the Green.’s function which can be 7) = 1 iz ?g(sT) &3
done by taking a Fourier transform (27)3/2

g(s) =

(2m)32(k2 — $2)
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Green's functions

G(r) is a Green's function and represents the response of a linear differential equation to a
delta function source

by determining the Green's function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source 53(F) = (V2 + kz) G(7)
equation for the Green'’s function which can be I B o 3
done by taking a Fourier transform (r) = (2)3/2 g(s)d>s
1 L
2 2 -\ 2 2 iS-F =\ 3=
(V2 + k%) G(7) (27T)3/2/[(V + k%) e ]g(s)ds
1 57 32 _ s3m _ L 2 2\ iEF (2 432
o) /e d>s = §°(r) (271)3/2/(_5 + k*) e*"g(5) d’s
1 1 o 1
g(3) = — G(7) = ST~ %

(2m)32(k2 — $2)

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il The integral Schrédinger equation



Integrating the Green's function V'

. 1 iwr 1 "
G(r)= (27r)3/e mds
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Integrating the Green's function

L1 e
0= Gy |

choose spherical coordinates with the polar axis fixed
along ¥ for the integration over §
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Integrating the Green's function

L1 e
0= Gy |

choose spherical coordinates with the polar axis fixed
along ¥ for the integration over §

thus, 5- 7 = srcosf and the ¢ integral is equal to 27
Carlo Segre (lllinois Tech)
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Integrating the Green's function

1 L 1 1 00 (T gisr cos ¢ )
G(F) = —— Is:r ds = —s°sinf df d
()= G /e CEraka (27r)2/0/0(k2—52)5 sin df s

choose spherical coordinates with the polar axis fixed i
along ¥ for the integration over § S

=y

thus, 5- 7 = srcosf and the ¢ integral is equal to 27
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Integrating the Green's function

1 L 1 1 00 (T gisr cos 0 )
G(F) = —— Is:r ds = ——s°sinf df d
()= G /e CEraka (27r)2/o/0(k2—52)5 sin db s

choose spherical coordinates with the polar axis fixed i -
along ¥ for the integration over § I S
thus, 5- 7 = srcosf and the ¢ integral is equal to 27 9
the 6 integral is

¢
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Integrating the Green's function

1 L 1 1 00 (T gisr cos 0 )
G(F) = —— Is:r ds = ——s°sinf df d
()= G /e CEraka (27r)2/o/0(k2—52)5 sin db s

choose spherical coordinates with the polar axis fixed i -
along ¥ for the integration over § I S
thus, 5- 7 = srcosf and the ¢ integral is equal to 27 9
the 6 integral is
eisrcos@ 7r
/0 - - q)

ISr 0
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Integrating the Green's function

1 L 1 1 00 (T gisr cos 0 )
G(F) = —— Is:r ds = ——s°sinf df d
()= G /e CEraka (27r)2/0/0(k2—52)5 sin db s

choose spherical coordinates with the polar axis fixed i -
along ¥ for the integration over § I S
thus, 5- 7 = srcosf and the ¢ integral is equal to 27 9
the 6 integral is
gisrcost ™ 2sin(sr)
isr | sr
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Integrating the Green's function

1 L 1 1 00 (T gisr cos 0 )
G(F) = —— Is:r ds = ——s°sinf df d
()= G /e CEraka (27r)2/0/0(k2—52)5 sin db s

choose spherical coordinates with the polar axis fixed i -
along ¥ for the integration over § I S
thus, 5- 7 = srcosf and the ¢ integral is equal to 27 9

the 6 integral is

eisrcos@ n 2sin(sr)
isr | sr
1 2 [*ssin(sr
G(F) = < / in(sr) s
(2m)2r Jo (k%2 —s2)
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Integrating the Green's function

1 L 1 1 00 (T gisr cos 0 )
G(F) = —— Is:r ds = ——s°sinf df d
()= G /e CEraka (27r)2/0/0(k2—52)5 sin db s

choose spherical coordinates with the polar axis fixed i -
along ¥ for the integration over § I S
thus, 5- 7 = srcosf and the ¢ integral is equal to 27 9
the 6 integral is
gisrcosf n 2sin(sr)
isr | sr
G(7) = 1 2/OQ ssin(sr) ds — 1 /°° ssin(sr) ds
(2m)2r Jo (k%2 —s2) An2r |_ (k% — s2)
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Integrating the Green's function i

1 L 1 1 00 (T gisr cos 0 )
G(F) = —— Is:r ds = ——s°sinf df d
()= G /e CEraka (27r)2/0/0(k2—52)5 sin db s

choose spherical coordinates with the polar axis fixed

A
along ¥ for the integration over § I S
thus, 5- 7 = srcosf and the ¢ integral is equal to 27 9
the 6 integral is
gisrcosf n 2sin(sr)
isr |, sr
G(7) = 1 2/°° ssin(sr) ds — 1 /°° ssin(sr) ds
(2m)2r Jo (k%2 —s2) An2r |_ (k% — s2)

this integral needs to be perfomed using Cauchy’s formula
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Radial integral of G(r) 7

" 1 [% ssin(sr)
G(r) = w2 e ) ds
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Radial integral of G(r) \id

" 1 [% ssin(sr)
G(r) = An2r —oo(k2 _ 52)

ds using e” —e ™ = 2isinx
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Radial integral of G(r) V

1 °° ssin(sr)

4n2r J_ (k2 — s2)

“wirl et Lasen®)

G(7) =

ds using e” —e ™ = 2isinx
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Radial integral of G(r)

S 1 > ssin(sr _ i
G(r) = 2 /_Oo G _(52)) ds using e

1 e se's o0
&rzir{/oo(k )(s + k) /oo
o & se’sr &
_87r2r{/ (s — k)(s + k) s+k /OO
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Radial integral of G(r) i

1 °° ssin(sr)

Ar?r J_ o (k% — 52)

_ 1 /OO /OO —ISr d
© 8m2ir oo (k — s+k oo (k—35)(s + k)

I' o0 ISr o —isr
:87r2r{/ (s— s+k /OO s+k) }

. i
G(7) = 8n2r [h— k]

G(r) = ds using €™ —e X = 2isinx
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Radial integral of G(r)

S 1 > ssin(sr _ i
G(r) = 2 /_Oo G _(52)) ds using e

1 e se's o0
87r2ir{/oo(k )(s + k) /oo
o & se’sr &
_871-2”{/ (57 S+k /oo

. i
G(7) = 8n2r [h— k]

both integrals are of the form to which we
can apply Cauchy's integral formula
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Radial integral of G(r) i

G(F) = ey /_Oo (,Z?n_(ssg)) ds using e* —e ™™ = 2isinx

A [ )
8m2ir oo (k — s+k oo s+k)
R
8m2r (s — k) s+k oo ( s+k)

G?:;'ll_l f(z) 7z = 2mif (z
(7) 87r2r[ 2] f(z—zo)d = 2mif (z0)

both integrals are of the form to which we
can apply Cauchy's integral formula if zp lies within the contour, otherwise 0
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Radial integral of G(r)

. 1 *° ssin(sr) _ i —ix ..
G(r) = el N 52) ds using €™ —e ™ = 2isinx
B 1 /OO 5 e /OO —ISI’ ds
© 8m2ir o (k —5)(s + k) oo (k—35)(s + k)
I' /OO S eISr /OO —isr
_ ds
8m2r (s — k)( s+k OOs—k (s + k)
oy f(2)
G(A) = g [h— 1] f dz = 2rif
8m2r (z—2) z = 2mif (z9)
both integrals are of the form to which we
can apply Cauchy's integral formula if zp lies within the contour, otherwise 0

in this case, the pole singularities lie along the path of integration so we need to avoid the
poles to use Cauchy’s formula
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Contour integration V

fﬂ dz = 2mif(zp)

(z — 20)
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Contour integration

Im{s}
s=-k
A R Re{s}
T
s=+k

Carlo Segre (lllinois Tech) PHYS 406 - Fundamentals of Quantum Theory Il

V

jf G ) % = 20 (20)

The integral Schrédinger equation



Contour integration v/

Im{s} %(f(z) dz = 2mif (zo)

z— zp)
s=k Ref{s}

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction
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Contour integration

Im{s} %(f(z) dz = 2mif (zo)

z— z9)
s=k Ref{s}

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo
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Contour integration 7

Im{s} %(f(z) dz = 2mif (zo)

z— z9)
s=k Ref{s}

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo
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Contour integration
Im{s}

s=k Ref{s}

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative

direction

close the contour at Re{s} — +oo in a semi-

circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)

sesr 1
h = — | —d
! %[s—{—k]s—k °
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Contour integration
Im{s}

s=k Ref{s}

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)

sesr 1
h = — | —d
! %[s—{—k]s—k °

isr

se
— i
mLH

s=k
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Contour integration
Im{s}

s=k Ref{s}

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)

sesr 1
h = — | —d
! %[s—{—k]s—k °

isr

ikr

=ime

.| se
:2711[
s=k

s+ k
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Contour integration
Im{s}

s=k - Ref{s}

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)
Seisr 1
h = —| —d
! %[s—{—k]s—k °
isr .
zzm[se — im e
s+ kl_y
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Contour integration

s=-k

Im{s}

Re{s}

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative

direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

Carlo Segre (lllinois Tech)
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%(f(Z) dz = 27Tif(20)

z— z9)
Seisr 1
h = —| —d
! %[s—{—k]s—k °
isr .
zzm[se — im e
s+ kl_y

Sefisr 1
h=—¢ |—| —d
2 %[s—k}s—i—k °
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Contour integration
Im{s}

s=k - Ref{s}

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)
Seisr 1
= —_ | ——d
! %[s—{—k]s—k °
isr .
—oni | 28 Ep—_
s+ kl_y
Sefisr 1
b = — —_— | —— d!
2 %[s—k}s—i—k °
—isr
:—zm[se
S—k |y
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Contour integration
Im{s}

s=k - Ref{s}

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)
Seisr 1
h = — | ——d
! %[s—{—k]s—k °
isr .
zzm[se = im el
s_’_ks:k
se i 1
bh=— — | ——d
2 %[s—k}s—i—k °
—isr .
— —2mi {se — _imelr
s—k s=—k
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Contour integration
Im{s}

s=k - Ref{s}

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)
Seisr 1
h = — | —— d!
! %[s—{—k]s—k °
isr .
zzm[se Ep—_
s+ kl_y
se i 1
I = — — | ——d
2 %[s—k}s—i—k °
—isr .
— i {Se = —ir el
s—k s=—k

67 = - [(ime) = (—ime)]
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Contour integration
Im{s}

s=k - Ref{s}

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} — +oo in a semi-
circle such that |s| — oo

%(f(Z) dz = 27Tif(20)

z— z9)
Seisr 1
h = — | —— d!
! %[s—{—k]s—k °
isr .
zzm[se Ep—_
s+ kl_y
se i 1
I = — — | ——d
2 %[s—k}s—i—k °
—isr .
— i {Se = —ir el
s—k s=—k

o0 =gt () - ()] -
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