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Review of partial wave method

Solve the Schrödinger equation for scattering from a central potential by separating the
scattered wave into a radial function and the spherical harmonics

then breaking it up into
three domains

ψ(r , θ, φ) = R(r)Ym
l (θ, φ), u(r) = rR(r)

Eu = − ~2

2m

d2u

dr2
+

[
V (r) +

~2

2m

l(l + 1)

r2

]
u

V   0

V   0

kr   1

Radiation zone - simple spherical wave solution holds for the
scattered wave superposed to incoming plane wave

Intermediate region - only include centrifugal term gives solu-
tions based on Hankel functions

Scattering region - no approximations applied must solve full
potential
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Partial wave solutions

ψ(r , θ, φ) = R(r)Ym
l (θ, φ), u(r) = rR(r), Eu = − ~2

2m

d2u

dr2
+

[
V (r) +

~2

2m

l(l + 1)

r2

]
u

Radiation zone – ignore V (r) and centripital potential

ψ ≈ A

[
e ikz + f (θ)

e ikr

r

]
Intermediate region – ignoring V (r) the solution has the Radiation zone form as r →∞

ψ = A

[
e ikz + k

∞∑
l=0

i l+1(2l + 1)alh
(1)
l (kr)Pl(cos θ)

]

= A
∞∑
l=0

i l(2l + 1)
[
jl(kr) + ikalh

(1)
l (kr)

]
Pl(cos θ)

Scattering region – include full potential and match to Intermediate region with incoming
plane wave expanded in partial waves
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Phase shift approach

An alternative approach to the scattering problem is to calculate the phase shift that is gained
by the scattered wave during the interaction with the potential

The phase shift is, in general, a function of k and therefore, of E = ~2k2/2m

This is completely equivalent to the calculation of scattering amplitudes, f , as can be seen in
the 1D example

ψV = A
(
e ikx + f e−ikx

)
ψV = A

(
e ikx − e2iδe−ikx

)
This approach simplifies the mathematics and is an elegant way to describe the physics: the
potential can only shift the phase of the scattered wave

We can show how the phase shift approach is applied to a 1D case, then the more general 3D
case where it is equivalent to partial wave description
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Phase shifts in 1-D

For a 1D system with a solid “wall” at x = 0, we
can write the incident

and reflected waves far from
the non-zero potential

ψi (x) = Ae+ikx , x < −a
ψr (x) = Be−ikx , x < −a

if V = 0 for x < 0, the full solution is simply the
sum of the two and with the boundary condition
ψ0(0) = 0, B = −A and we can write the full
solution

ψ0(x) = A
(
e ikx − e−ikx

)
ψV (x) = A

(
e ikx − e−ikxe2iδ

)

-a 0
x

V

Be
-ikx

Ae
+ikx

with a V (x) 6= 0, the reflected wave
will gain a phase shift, 2δ, from
traversing the region −a ≤ x ≤ 0
twice and the solution becomes
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Phase shifts in 3-D

Recall that the incident plane wave can be expressed as a sum of partial waves with m = 0

ψ0 = Ae ikz =
∞∑
l=0

ψ
(l)
0 =

∞∑
l=0

Ai l(2l + 1)jl(kr)Pl(cos θ)

each partial wave with a specific total angular momentum scatters independently
and for x � 1 and V (r) = 0

jl(x) =
1

2

[
h
(1)
l (x) + h

(2)
l (x)

]
≈ 1

2x

[
(−1)l+1e ix + i l+1e−ix

]
thus, for the l th partial wave, at large r
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Connection between al and δl

Comparing this result

with the general solution by partial waves and keeping the terms that do
not cancel

ψ(l) ≈ A
(2l + 1)

2ikr

[
e ikre2iδl − (−1)le−ikr

]
Pl(cos θ)

ψ(l) ≈ A

{
(2l + 1)

2ikr

[
e ikr − (−1)le−ikr

]
+

(2l + 1)

r
ale

ikr

}
Pl(cos θ)

����(2l + 1)

2ik�r
e2iδl�

�e ikr = ����(2l + 1)

2ik�r
�
�e ikr + ����(2l + 1)

�r
al�

�e ikr

al =
1

2ik

(
e2iδl − 1

)
=

1

k
e iδl

e iδl − e−iδl

2i
=

1

k
e iδl sin(δl)

then, following the partial wave calculation, the scattering factor and total cross-section
become

f (θ) =
1

k

∞∑
l=0

(2l + 1)e iδl sin(δl)Pl(cos θ), σ =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl)
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∞∑
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The integral Schrödinger equation

• Development of the integral equation

• Green’s functions

• Integrating the Green’s function
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Integral form of the Schrödinger equation

Starting with the time-independent Schrödinger
equation

and rewriting it in a more compact form
using

k ≡
√

2mE

~
, Q ≡ 2m

~2
Vψ

if we can find a solution of this equation, G (~r), for
a delta function source then the solution to the
actual source, Q, becomes

Eψ = − ~2

2m
∇2ψ + Vψ

Q =
(
∇2 + k2

)
ψ

δ3(~r) =
(
∇2 + k2

)
G (~r)

ψ(~r) =

∫
G (~r −~r0)Q(~r0) d3~r0

and this satisfies the Schrödinger equation(
∇2 + k2

)
ψ(~r) =

∫ [ (
∇2 + k2

)
G (~r −~r0)

]
Q(~r0) d3~r0

=

∫
δ3(~r −~r0)Q(~r0) d3~r0 = Q(~r) =

2m

~2
Vψ(~r)
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Green’s functions

G (~r) is a Green’s function and represents the response of a linear differential equation to a
delta function source

by determining the Green’s function, we can solve the differential equation’s response to an
arbitrary source using a simple integral equation

the task is to solve the delta function source
equation for the Green’s function which can be
done by taking a Fourier transform

δ3(~r) =
(
∇2 + k2

)
G (~r)

G (~r) =
1

(2π)3/2

∫
e i~s·~rg(~s) d3~s

(
∇2 + k2

)
G (~r) =

1

(2π)3/2

∫ [(
∇2 + k2

)
e i~s·~r

]
g(~s) d3~s

1

(2π)3

∫
e i~s·~r d3~s =

δ3(~r) =

1

(2π)3/2

∫ (
−s2 + k2

)
e i~s·~rg(~s) d3~s

g(~s) =
1

(2π)3/2(k2 − s2)
−→ G (~r) =

1

(2π)3

∫
e i~s·~r

1

(k2 − s2)
d3~s
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Integrating the Green’s function

G (~r) =
1

(2π)3

∫
e i~s·~r

1

(k2 − s2)
d~s

=
1

(2π)2

∫ ∞
0

∫ π

0

e isr cos θ

(k2 − s2)
s2sin θ dθ ds

choose spherical coordinates with the polar axis fixed
along ~r for the integration over ~s

thus, ~s ·~r = sr cos θ and the φ integral is equal to 2π

the θ integral is

Iθ = − e isr cos θ

isr

∣∣∣∣π
0

=
2 sin(sr)

sr

r

s

θ

φ

G (~r) =
1

(2π)2
2

r

∫ ∞
0

s sin(sr)

(k2 − s2)
ds =

1

4π2r

∫ ∞
−∞

s sin(sr)

(k2 − s2)
ds

this integral needs to be perfomed using Cauchy’s formula
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Radial integral of G (~r)
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G (~r) =
i
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both integrals are of the form to which we
can apply Cauchy’s integral formula

∮
f (z)

(z − z0)
dz = 2πif (z0)

if z0 lies within the contour, otherwise 0

in this case, the pole singularities lie along the path of integration so we need to avoid the
poles to use Cauchy’s formula
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Contour integration

Re{s}

Im{s}

s=-k

s=+k

deform the path to loop around the negative
pole in the positive direction by an infinitesimal
amount, and the positive pole in the negative
direction

close the contour at Re{s} → ±∞ in a semi-
circle such that |s| → ∞

∮
f (z)

(z − z0)
dz = 2πif (z0)

I1 =

∮ [
s e isr

s + k

]
1

s − k
ds

= 2πi

[
s e isr

s + k

∣∣∣∣
s=k

= iπ e ikr

I2 = −
∮ [

s e−isr

s − k

]
1

s + k
ds

= −2πi

[
s e−isr

s − k

∣∣∣∣
s=−k

= −iπ e ikr

G (~r) =
i

8π2r

[(
iπ e ikr

)
−
(
−iπ e ikr

)]
= − e ikr

4πr
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