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Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of a system with Hamiltonian
H which cannot be solved exactly (a very common occurrence!).

Using the variational principle it is possible to obtain an upper bound on Egs .

If ψ is an arbitrary normalized wave function, we can
write

where ψn are the (unknown) eigenfunctions of H,
which form a complete set

ψ =
∑
n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

〈∑
m

cmψm

∣∣∣∣∣ ∑
n

cnψn

〉
=
∑
m

∑
n

c∗mcn〈ψm|ψn〉 =
∑
n

|cn|2
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Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrary wave function, ψ we
have

〈H〉 =

〈∑
m

cmψm

∣∣∣∣∣ H∑
n

cnψn

〉
=
∑
m

∑
n

c∗mEncn〈ψm|ψn〉 =
∑
n

En|cn|2

since the ground state energy must be the smallest
eigenvalue of the Hamiltonian, then Egs ≤ En and
we can write

〈H〉 ≥ Egs

∑
n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute an upper bound on the
ground state energy and, if we make a judicious choice of arbitrary wave function, ψ (ie. not
arbitrary at all!) we can get very close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonian expectation value to achieve
this upper bound.
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Example 8.1 - harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using the variational theorem

H = − ~2

2m

d2

dx2
+

1

2
mω2x2

Assume a solution of the form

where b is the variational parameter
and A is the normalization parameter

Now compute the expectation value
of the Hamiltonian, which must be an
upper bound on the ground state en-
ergy

ψ(x) = Ae−bx
2

1 = |A|2
∫ ∞
−∞

e−2bx
2
dx = |A|2

√
π

2b

A =

(
2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉
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Example 8.1 (cont.)

The kinetic and potential energies are instances of the Gaussian integral

〈T 〉 = − ~2

2m
|A|2

∫ ∞
−∞

e−bx
2 d2

dx2

(
e−bx

2
)
dx = − ~2

2m

(
2b

π

)1/2∫ ∞
−∞

(
4b2x2 − 2b

)
e−2bx

2
dx

= − ~2

2m

(
2b

π

)1/2 [
4b2
√

π

32b3
− 2b

√
π

2b

]
=

~2b
2m

〈V 〉 =
1

2
mω2|A|2

∫ ∞
−∞

x2e−2bx
2
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Example 8.2 - delta function

Find the ground state energy of a delta func-
tion potential

Start with the same Gaussian trial function
as for the harmonic oscillator

We know that

〈T 〉 =
~2b
2m

we need to compute 〈V 〉

the upper bound for the energy is thus given
by minimizing wrt b

H = − ~2

2m

d2

dx2
− αδ(x)

ψ(x) = Ae−bx
2

〈V 〉 = −α|A|2
∫ ∞
−∞

δ(x)e−2bx
2
dx = −α

√
2b

π

〈H〉 =
~2b
2m
− α

√
2b

π

0 =
d

db
〈H〉 =

~2

2m
− α√

2πb

b =
2m2α2

π~4
−→ 〈H〉min = −mα2

π~2
≥ −mα2

2~2
= Egs
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The helium atom

• Helium atom coordinates

• Choosing the trial function

• Setting up the integrals

• The r1 and r2 integrals
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Helium atom

The helium atom is an ideal application of the variational principle. The full Hamiltonian
includes an electron-electron interaction which we ignored when we first discussed it

H = − ~2

2m
(∇2

1 +∇2
2)− e2

4πε0

(
2

r1
+

2

r2
− 1

|~r1 − ~r2|

)
We wish to compute the ground state energy,
which is the total energy required to remove both
electrons. This has been measured to be

Egs = −78.975 eV

the problem is the electron-electron interaction

Vee=
e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

+2e

-e

-e|r1-r2|

|r1|
|r2|
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Trial function for helium

If the electron-electron term is ignored, the exact solution of the helium atom is a combination
of the two hydrogenic atom wave functions

ψ0(~r1, ~r2)

≡ ψ100(~r1)ψ100(~r2) =
8

πa3
e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so can get a better approximation by applying
the variational principle with this trial function?

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =
e2/4πε0
|~r1 − ~r2|

〈Vee〉

=

(
e2

4πε0

)(
8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|
d3~r1 d

3~r2
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Setting up the integrals

The correction to the helium atom energy using the variational theorem is

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|
d3~r1 d

3~r2

r1
r2

θ2

φ2

|r -r |1 2

x2

y2

z2

the integral mixes the coordinates but can be sim-
plified by careful selection of the two coordinate
systems

taking ~r1 along the z-axis of the ~r2 coordinate sys-
tem, gives

|~r1 − ~r2|

=
√

r21 + r22 − 2r1r2 cos θ2
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The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(

1

r1

∫ r1

0
r22 e

−4r2/a dr2

+

∫ ∞
r1

r2 e
−4r2/a dr2

)
these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−
(a

4

)
r22 e
−4r2/a

∣∣∣r1
0

+ 2
(a

4

)∫ r1

0
r2e
−4r2/a dr2

= −
(a

4

)
r21 e
−4r1/a

−2
(a

4

)2
r2e
−4r2/a

∣∣∣∣r1
0

+ 2
(a

4

)2 ∫ r1

0
e−4r2/a dr2

= −
(a

4

)
r21 e
−4r1/a − 2

(a
4

)2
r1e
−4r1/a

− 2
(a

4

)3
e−4r1/a + 2

(a
4

)3

Iblue =

−
(a

4

)
r2e
−4r2/a

∣∣∣∞
r1

+
(a

4

)∫ ∞
r1

e−4r2/a dr2

= +
(a

4

)
r1e
−4r1/a

+
(a

4

)2
e−4r1/a
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Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]

=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]

=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]

=
5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)

= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy

of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(
e2

4πε0

)(
8

πa3

)∫
1

r1

[
1−
(

1+
2r1
a

)
e−4r1/a

]
e−4r1/ar21 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on the radial coordinate

〈Vee〉 =

(
8e2

πε0a3

)∫ ∞
0

[
re−4r/a −

(
r +

2r2

a

)
e−8r/a

]
dr

=

(
8e2

πε0a3

)[(a
4

)2
−
(a

8

)2
− 4

a

(a
8

)3]
=

(
8e2

πε0a3

)[
a2

16
− a2

64
− a2

128

]
=

(
8e2

πε0a3

)
a2
[

8− 2− 1

128

]
=

5

2

(
e2

8πε0a

)
= −5

2
E1 = +34eV

the variational principle, with no adjustable parameters, gives an upper bound for the ground
state energy of E0 = −109 + 34 = −75 eV

Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



Carlo Segre (Illinois Tech) PHYS 406 - Fundamentals of Quantum Theory II The helium atom



An improved helium atom energy

• Helium atom review

• Improved trial wavefunction

• A much better energy!
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The helium atom so far...

The helium atom is an excellent “real world” example of the use of the variational method to
compute the ground state energy of an analytically insoluble quantum system

H = − ~2

2m
(∇2

1 +∇2
2)− e2

4πε0

(
2

r1
+

2

r2
− 1

|~r1 − ~r2|

)

the simplest model is to ignore the electron-
electron interaction with both electrons in the hy-
drogenic ground state with energy E0 = −109 eV

the variational principle with this same trial wave
function (no adjustable parameters) gives an upper
bound for the ground state energy of E0 = −109+
34 = −75 eV

ψ0(~r1, ~r2)

≡ ψ100(~r1)ψ100(~r2)

=
8

πa3
e−2r1/ae−2r2/a

〈Vee〉

=

〈
e2/4πε0
|~r1 − ~r2|

〉
= +34eV
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electron interaction with both electrons in the hy-
drogenic ground state with energy E0 = −109 eV

the variational principle with this same trial wave
function (no adjustable parameters) gives an upper
bound for the ground state energy

of E0 = −109+
34 = −75 eV
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A better trial function

So, 〈H〉 = −109 eV + 34 eV

= −75 eV, but it is possible to do better still with a more suitable
trial function which has a variational parameter which will minimize the energy

ψ(~r1,~r2) =
8

πa3
e−2r1/ae−2r2/a ψ1(~r1,~r2) =

Z 3

πa3
e−Zr1/ae−Zr2/a

with the variational parameter being the effective charge Z which takes into account screening
of the nucleus by the “other” electron

Starting with the full Hamiltonian then adding and subtracting terms with Z replacing 2 in the
Coulomb terms
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r1
+

Z

r2
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+
e2

4πε0
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Z − 2

r1
+

Z − 2

r2
+

1

|~r1 −~r2|

)

this can be rearranged to be the sum of a non-interaction Hamiltonian matching the new trial
function and an effective “interaction” term
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Evaluating the Hamiltonian

Taking the expectation value of the Hamiltonian, we have:

〈H〉 =2Z 2E1 + 2(Z − 2)

(
e2

4πε0

)〈
1

r

〉
+ 〈Vee〉

With the effective nuclear charge Z , the expecta-
tion value of 1

r becomes

and the expectation value of Vee is the same as
was just computed but with Z instead of 2

〈
1

r

〉
=

Z

a

〈Vee〉 =
5Z

4

(
e2

8πε0a

)
= −5Z

4
E1

the final result is thus

〈H〉 =
[
2Z 2 − 4Z (Z − 2)− 5

4Z
]
E1 =

[
−2Z 2 + 27

4 Z
]
E1
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Improved helium energy

This energy can be minimized with respect to the effective charge, Z

0 =
d

dZ
〈H〉 =

d

dZ

[
−2Z 2 +

27

4
Z

]
E1 =

[
−4Z +

27

4

]
E1 −→ Z =

27

16

= 1.69

The improved energy estimate becomes

〈H〉 =

[
2

(
27

16

)2

− 4

(
27

16

)(
27

16
− 2

)
− 6

4

27

16

]
E1

=

[
−2

(
27

16

)2

+
27

4

27

16

]
E1 = 2

(
27

16

)2

E1 =
1

2

(
3

2

)6

E1 = −77.5 eV

comparing the different solutions with the experimental value

experimental helium energy −→ −78.975 eV
ignoring e-e interaction −→ −109 eV ∼38% error
simple variational function −→ −75.0 eV ∼5% error
variational Z parameter −→ −77.5 eV ∼2% error
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