Term: Spring 2020
Meetings: Tuesday & Thursday 11:25-12:40
Location: 204 Stuart Building

Instructor: Carlo Segre
Office: 166d/172 Pritzker Science
Phone: 312.567.3498
email: segre@iit.edu

Web Site: http://phys.iit.edu/~segre/phys406/20S
Course Objectives

1. Understand the connection between symmetry and conservation laws.
Course Objectives

1. Understand the connection between symmetry and conservation laws.

2. Understand time-independent perturbation theory.
Course Objectives

1. Understand the connection between symmetry and conservation laws.

2. Understand time-independent perturbation theory.

3. Understand the variational method.
Course Objectives

1. Understand the connection between symmetry and conservation laws.

2. Understand time-independent perturbation theory.

3. Understand the variational method.

4. Understand the WKB approximation and scattering theory.
Course Objectives

1. Understand the connection between symmetry and conservation laws.
2. Understand time-independent perturbation theory.
3. Understand the variational method.
4. Understand the WKB approximation and scattering theory.
5. Understand dynamical effects in quantum mechanics.
Course Objectives

1. Understand the connection between symmetry and conservation laws.

2. Understand time-independent perturbation theory.

3. Understand the variational method.

4. Understand the WKB approximation and scattering theory.

5. Understand dynamical effects in quantum mechanics.

6. Be able to solve quantum mechanics problems using the approximation method appropriate to the situation.
Course Grading

15% – Homework assignments
Course Grading

15% – Homework assignments
 Weekly or bi-weekly
Course Grading

15% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
Course Grading

15% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard
15% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard

50% – Two mid-term exams
Course Grading

15% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard

50% – Two mid-term exams

35% – Final examination
Course Grading

15% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard

50% – Two mid-term exams

35% – Final examination

Grading scale
A – 88% to 100%
B – 75% to 88%
C – 62% to 75%
D – 50% to 62%
E – 0% to 50%
Topics to be Covered

1. Symmetry & conservation laws
1. Symmetry & conservation laws

2. Time-independent perturbation theory
Topics to be Covered

1. Symmetry & conservation laws
2. Time-independent perturbation theory
3. Variational method
Topics to be Covered

1. Symmetry & conservation laws
2. Time-independent perturbation theory
3. Variational method
4. WKB approximation
Topics to be Covered

1. Symmetry & conservation laws
2. Time-independent perturbation theory
3. Variational method
4. WKB approximation
5. Scattering theory
Topics to be Covered

1. Symmetry & conservation laws
2. Time-independent perturbation theory
3. Variational method
4. WKB approximation
5. Scattering theory
6. Quantum dynamics
Topics to be Covered

1. Symmetry & conservation laws
2. Time-independent perturbation theory
3. Variational method
4. WKB approximation
5. Scattering theory
6. Quantum dynamics
7. Quantum paradoxes
Topics to be Covered

1. Symmetry & conservation laws
2. Time-independent perturbation theory
3. Variational method
4. WKB approximation
5. Scattering theory
6. Quantum dynamics
7. Quantum paradoxes
8. Quantum Information Science
Up-to-date schedule at
http://phys.iit.edu/~segre/phys406/20S/schedule.html
Course Schedule

Up-to-date schedule at
http://phys.iit.edu/~segre/phys406/20S/schedule.html

28 class sessions
Course Schedule

Up-to-date schedule at http://phys.iit.edu/~segre/phys406/20S/schedule.html

28 class sessions

2 mid-term exams
Course Schedule

Up-to-date schedule at http://phys.iit.edu/~segre/phys406/20S/schedule.html

28 class sessions

2 mid-term exams

~190 pages to cover
Course Schedule

Up-to-date schedule at http://phys.iit.edu/~segre/phys406/20S/schedule.html

28 class sessions
2 mid-term exams
~190 pages to cover
~15 pages/week
Course Schedule

Up-to-date schedule at
http://phys.iit.edu/~segre/phys406/20S/schedule.html

28 class sessions
2 mid-term exams
~190 pages to cover
~15 pages/week

Focus on approximate methods for solving real problems in quantum mechanics and actual quantum mechanics research.
Today’s Outline - January 14, 2020

• Tips for success
• The big picture
• Transformations
• Translation operator
• Parity operator

Reading Assignment: Chapter 6.1-6.5

Homework Assignment #01: Chapter 6: 1,3,4,8,9,10
due Tuesday, January 21, 2020

C. Segre (IIT)
Today’s Outline - January 14, 2020

- Tips for success
Today’s Outline - January 14, 2020

• Tips for success

• The big picture
Today’s Outline - January 14, 2020

- Tips for success
- The big picture
- Transformations

Reading Assignment: Chapter 6.1-6.5

Homework Assignment #01:
Chapter 6: 1, 3, 4, 8, 9, 10
due Tuesday, January 21, 2020
Today’s Outline - January 14, 2020

- Tips for success
- The big picture
- Transformations
- Translation operator

Reading Assignment: Chapter 6.1-6.5
Homework Assignment #01: Chapter 6: 1,3,4,8,9,10 due Tuesday, January 21, 2020
Today’s Outline - January 14, 2020

• Tips for success
• The big picture
• Transformations
• Translation operator
• Parity operator
Today’s Outline - January 14, 2020

- Tips for success
- The big picture
- Transformations
- Translation operator
- Parity operator

Reading Assignment: Chapter 6.1-6.5

Homework Assignment #01:
Chapter 6: 1, 3, 4, 8, 9, 10
due Tuesday, January 21, 2020
Today’s Outline - January 14, 2020

• Tips for success
• The big picture
• Transformations
• Translation operator
• Parity operator

Reading Assignment: Chapter 6.1-6.5

Homework Assignment #01:
Chapter 6: 1,3,4,8,9,10
due Tuesday, January 21, 2020
Tips for success

1. Do the reading assignments before lecture, you will understand them better.
Tips for success

1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book.
1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book. **TAKE NOTES!**

Struggling is good and helps you learn!
Tips for success

1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book. TAKE NOTES!

3. Ask questions in class, it’s likely that others have the same ones.
Tips for success

1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book. **TAKE NOTES!**

3. Ask questions in class, it’s likely that others have the same ones.

4. Go through the derivations yourself, kill some trees!
Tips for success

1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book. TAKE NOTES!

3. Ask questions in class, it’s likely that others have the same ones.

4. Go through the derivations yourself, kill some trees!

5. Do the homework the “right” way, only use the solutions manual as a last resort.
Tips for success

1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book. **TAKE NOTES!**

3. Ask questions in class, it’s likely that others have the same ones.

4. Go through the derivations yourself, kill some trees!

5. Do the homework the “right” way, only use the solutions manual as a last resort. **Struggling is good and helps you learn!**
1. Do the reading assignments before lecture, you will understand them better.

2. Attend class or really view the lectures completely, there are things discussed which are not on the slides or the book. **TAKE NOTES!**

3. Ask questions in class, it’s likely that others have the same ones.

4. Go through the derivations yourself, kill some trees!

5. Do the homework the “right” way, only use the solutions manual as a last resort. **Struggling is good and helps you learn!**

6. Come to office hours with questions, I’ll be less lonely and it will help you too!
Why approximate methods?

In the first semester of this course, we learned the “mechanics” of quantum physics
Why approximate methods?

In the first semester of this course, we learned the “mechanics” of quantum physics

The problems we could solve, however, were very limited
Why approximate methods?

In the first semester of this course, we learned the “mechanics” of quantum physics.

The problems we could solve, however, were very limited.

Approximate methods permit us to approach a wider range of phenomena.
Why approximate methods?

In the first semester of this course, we learned the "mechanics" of quantum physics.

The problems we could solve, however, were very limited.

Approximate methods permit us to approach a wider range of phenomena.

This semester we will use our toolbox to understand "real" quantum physics phenomena and connect them to experiment.
Why approximate methods?

In the first semester of this course, we learned the “mechanics” of quantum physics.

The problems we could solve, however, were very limited.

Approximate methods permit us to approach a wider range of phenomena.

This semester we will use our toolbox to understand “real” quantum physics phenomena and connect them to experiment.

Quantum physics is the foundation of the discipline and is part of the day-to-day work of a professional physicist.
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego

1983 – joined Illinois Tech Faculty
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego

1983 – joined Illinois Tech Faculty

2006 – elected Fellow International Center for Diffraction Data

2011 – appointed Duchossois Professor of Physics

2013 – elected Fellow American Association for the Advancement of Science

2014 – Co-founder and current CTO of Influit Energy startup
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego

1983 – joined Illinois Tech Faculty

2006 – elected Fellow International Center for Diffraction Data

2011 – appointed Duchossois Professor of Physics
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego

1983 – joined Illinois Tech Faculty

2006 – elected Fellow International Center for Diffraction Data

2011 – appointed Duchossois Professor of Physics

2013 – elected Fellow American Association for the Advancement of Science
A bit more about me...

1976 – B.S. in Physics & Chemistry, University of Illinois at Urbana-Champaign

1981 – Ph.D. in Physics, University of California, San Diego

1983 – joined Illinois Tech Faculty

2006 – elected Fellow International Center for Diffraction Data

2011 – appointed Duchossois Professor of Physics

2013 – elected Fellow American Association for the Advancement of Science

2014 – Co-founder and current CTO of Influit Energy startup
The company . . . Influit Energy, LLC

Influit Energy R&D
NEF Gen 1 prototype development

Pilot Program
NEF battery validation on small EUV

Influit Energy R&D
NEF Gen 1 wing/motor demo

Influit Energy R&D
NEF Gen 2 demo

Influit Energy R&D
Transportable liquid battery pods

The company . . . Influit Energy, LLC

Influit Energy (IIT)
Translation operator

The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x

\[\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) \]
The translation operator, \(\hat{T}(a) \), can be expressed in terms of the momentum operator by starting with the Taylor series expansion for \(\psi(x - a) \) about \(x \)

\[
\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n} \bigg|_{x=a=x}
\]
The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n \psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}$$
The translation operator, \(\hat{T}(a) \), can be expressed in terms of the momentum operator by starting with the Taylor series expansion for \(\psi(x - a) \) about \(x \)

\[
\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} (x - a - x)^n \left. \frac{d^n \psi(x - a)}{d(x - a)^n} \right|_{x-a=x} \\
= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \left. \frac{d^n \psi(x)}{dx^n} \right|_x
\]
Translation operator

The translation operator, \(\hat{T}(a) \), can be expressed in terms of the momentum operator by starting with the Taylor series expansion for \(\psi(x - a) \) about \(x \)

\[
\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n}{dx^n} \psi(x)
\]
The translation operator, \(\hat{T}(a) \), can be expressed in terms of the momentum operator by starting with the Taylor series expansion for \(\psi(x - a) \) about \(x \)

\[
\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n}\bigg|_{x=a=x} \\
= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n}\bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n}\psi(x) \\
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia \hbar}{\hbar i dx} \right)^n \psi(x)
\]
Translation operator

The translation operator, \(\hat{T}(a) \), can be expressed in terms of the momentum operator by starting with the Taylor series expansion for \(\psi(x - a) \) about \(x \)

\[
\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n}{dx^n} \psi(x)
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \frac{d}{dx} \right)^n \psi(x)
\]
The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x:

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x-a)}{d(x-a)^n} \bigg|_{x-a=x}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \frac{d}{i dx} \right)^n \psi(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \hat{p} \right)^n \psi(x)$$

Thus, the momentum is the generator of translations and the translation operator is clearly unitary.
The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \bigg|_{x} = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \psi(x)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \frac{d}{dx} \right)^n \psi(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \hat{p} \right)^n \psi(x)$$

$$= e^{-ia\hat{p}/\hbar} \psi(x)$$
The translation operator, \(\hat{T}(a) \), can be expressed in terms of the momentum operator by starting with the Taylor series expansion for \(\psi(x - a) \) about \(x \)

\[
\hat{T}(a) \psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^{n} \frac{d^n \psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n \psi(x)}{dx^n} \bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n \psi(x)}{dx^n} \psi(x)
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ia}{\hbar} \frac{d}{dx} \right)^n \psi(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ia}{\hbar} \hat{p} \right)^n \psi(x)
\]

\[
= e^{-ia\hat{p}/\hbar} \psi(x) \quad \rightarrow \quad \hat{T}(a) = e^{-ia\hat{p}/\hbar}
\]

momentum is thus the generator of translations and the translation operator is clearly unitary
The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \frac{d}{dx} \right)^n \psi(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \hat{p} \right)^n \psi(x)$$

$$= e^{-ia\hat{p}/\hbar} \psi(x) \quad \rightarrow \quad \hat{T}(a) = e^{-ia\hat{p}/\hbar}$$

momentum is thus the **generator of translations** and the translation operator is clearly unitary

$$\hat{T}(a)^{-1} = e^{+ia\hat{p}/\hbar}$$
Translation operator

The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \frac{d^n\psi(x - a)}{d(x - a)^n} \bigg|_{x-a=x}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n} \bigg|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{d^n\psi(x)}{dx^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ia}{\hbar} \frac{d}{i dx} \right)^n \psi(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ia}{\hbar} \hat{p} \right)^n \psi(x)$$

$$= e^{-ia\hat{p}/\hbar} \psi(x) \quad \rightarrow \quad \hat{T}(a) = e^{-ia\hat{p}/\hbar}$$

momentum is thus the generator of translations and the translation operator is clearly unitary

$$\hat{T}(a)^{-1} = \hat{T}(-a) \quad e^{ia\hat{p}/\hbar} = e^{ia\hat{p}/\hbar}$$
Translation operator

The translation operator, $\hat{T}(a)$, can be expressed in terms of the momentum operator by starting with the Taylor series expansion for $\psi(x - a)$ about x

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} [(x - a) - x]^n \left. \frac{d^n \psi(x - a)}{d(x - a)^n} \right|_{x-a=x}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \left. \frac{d^n \psi(x)}{dx^n} \right|_x = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \left. \frac{d^n \psi(x)}{dx^n} \right|_x$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ia}{\hbar} \frac{d}{dx} \right)^n \psi(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ia}{\hbar} \hat{p} \right)^n \psi(x)$$

$$= e^{-ia\hat{p}/\hbar} \psi(x) \quad \rightarrow \quad \hat{T}(a) = e^{-ia\hat{p}/\hbar}$$

momentum is thus the generator of translations and the translation operator is clearly unitary

$$\hat{T}(a)^{-1} = \hat{T}(-a) = \hat{T}^\dagger(a)$$

$$e^{+ia\hat{p}/\hbar} = e^{+ia\hat{p}/\hbar} = e^{+ia\hat{p}/\hbar}$$
Operator transformations

Clearly we can translate functions, but the concept of translation and the \hat{T} operator are much more general.
Operator transformations

Clearly we can translate functions, but the concept of translation and the \(\hat{T} \) operator are much more general.

It is also possible to translate an operator
Operator transformations

Clearly we can translate functions, but the concept of translation and the \hat{T} operator are much more general.

It is also possible to translate an operator

the translated operator \hat{Q}' is defined in terms of the translated wave function
Operator transformations

Clearly we can translate functions, but the concept of translation and the \hat{T} operator are much more general.

It is also possible to translate an operator

the translated operator \hat{Q}' is defined in terms of the translated wave function

\[
\langle \psi' \mid \hat{Q} \mid \psi' \rangle = \langle \psi \mid \hat{Q}' \mid \psi \rangle
\]
Operator transformations

Clearly we can translate functions, but the concept of translation and the \(\hat{T} \) operator are much more general.

It is also possible to translate an operator

the translated operator \(\hat{Q}' \) is defined in terms of the translated wave function

\[
\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{Q}' | \psi \rangle
\]

The translated operator \(\hat{Q}' \) gives the same expectation value in the untranslated state as the untranslated operator \(\hat{Q} \) gives in the translated state
Operator transformations

Clearly we can translate functions, but the concept of translation and the \(\hat{T} \) operator are much more general.

It is also possible to translate an operator

the translated operator \(\hat{Q}' \) is defined in terms of the translated wave function

\[
\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{Q}' | \psi \rangle
\]

The translated operator \(\hat{Q}' \) gives the same expectation value in the untranslated state as the untranslated operator \(\hat{Q} \) gives in the translated state

This effectively equates the shifting of the wavefunction, an active transformation, with the shifting of the coordinate system, a passive transformation
Operator transformations

Clearly we can translate functions, but the concept of translation and the \hat{T} operator are much more general.

It is also possible to translate an operator

the translated operator \hat{Q}' is defined in terms of the translated wave function

$$\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{Q}' | \psi \rangle$$

The translated operator \hat{Q}' gives the same expectation value in the untranslated state as the untranslated operator \hat{Q} gives in the translated state

This effectively equates the shifting of the wavefunction, an active transformation, with the shifting of the coordinate system, a passive transformation

$$\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{T}^\dagger \hat{Q} \hat{T} | \psi \rangle$$
Operator transformations

Clearly we can translate functions, but the concept of translation and the \hat{T} operator are much more general.

It is also possible to translate an operator

the translated operator \hat{Q}' is defined in terms of the translated wave function

$$\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{Q}' | \psi \rangle$$

The translated operator \hat{Q}' gives the same expectation value in the untranslated state as the untranslated operator \hat{Q} gives in the translated state

This effectively equates the shifting of the wavefunction, an active transformation, with the shifting of the coordinate system, a passive transformation

$$\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{T}^\dagger \hat{Q} \hat{T} | \psi \rangle = \langle \psi | \hat{Q}' | \psi \rangle$$
Operator transformations

Clearly we can translate functions, but the concept of translation and the \hat{T} operator are much more general.

It is also possible to translate an operator

the translated operator \hat{Q}' is defined in terms of the translated wave function

$$\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{Q}' | \psi \rangle$$

The translated operator \hat{Q}' gives the same expectation value in the untranslated state as the untranslated operator \hat{Q} gives in the translated state

This effectively equates the shifting of the wavefunction, an active transformation, with the shifting of the coordinate system, a passive transformation

$$\langle \psi' | \hat{Q} | \psi' \rangle = \langle \psi | \hat{T}^\dagger \hat{Q} \hat{T} | \psi \rangle = \langle \psi | \hat{Q}' | \psi \rangle \quad \rightarrow \quad \hat{Q}' \equiv \hat{T}^\dagger \hat{Q} \hat{T}$$
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function $f(x)$:

$$\hat{x}' f(x) = \hat{T}^\dagger(a) \hat{x} \hat{T}(a) f(x)$$
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}(a) = \hat{T}(-a)$ so

$$\hat{x}' f(x) = \hat{T}(a) \hat{x} \hat{T}(a) f(x)$$
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}(a) = \hat{T}(-a)$ so

$$\hat{x}' f(x) = \hat{T}(a) \hat{x} \hat{T}(a) f(x) = \hat{T}(-a) \hat{x} \hat{T}(a) f(x)$$
Example 6.1

Find the operator \(\hat{x}' \) obtained by applying a translation through a distance \(a \) to the operator \(\hat{x} \). That is, what is the action of \(\hat{x}' \) on an arbitrary function \(f(x) \)?

Begin with the definition of the translated operator applied to a test function, but \(\hat{T}^\dagger(a) = \hat{T}(-a) \) so

\[
\hat{x}' f(x) = \hat{T}^\dagger(a) \hat{x} \hat{T}(a) f(x) \\
= \hat{T}(-a) \hat{x} \hat{T}(a) f(x) \\
= \hat{T}(-a) x f(x - a)
\]
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}^\dagger(a) = \hat{T}(-a)$ so now apply $\hat{T}(-a)$ to x and $f(x - a)$ according to its definition

$$\hat{x}' f(x) = \hat{T}^\dagger(a) \hat{x} \hat{T}(a) f(x)$$
$$= \hat{T}(-a) \hat{x} \hat{T}(a) f(x)$$
$$= \hat{T}(-a) x f(x - a)$$
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}^\dagger(a) = \hat{T}(-a)$ so

now apply $\hat{T}(-a)$ to x and $f(x - a)$ according to its definition

$$\hat{x}' f(x) = \hat{T}^\dagger(a) \hat{x} \hat{T}(a) f(x)$$

$$= \hat{T}(-a) \hat{x} \hat{T}(a) f(x)$$

$$= \hat{T}(-a) x f(x - a)$$

$$\hat{x}' f(x) = (x + a) f(x)$$

Example 6.1

Find the operator \(\hat{x}' \) obtained by applying a translation through a distance \(a \) to the operator \(\hat{x} \). That is, what is the action of \(\hat{x}' \) on an arbitrary function \(f(x) \)?

Begin with the definition of the translated operator applied to a test function, but \(\hat{T}^\dagger(a) = \hat{T}(-a) \) so now apply \(\hat{T}(-a) \) to \(x \) and \(f(x - a) \) according to its definition

\[
\hat{x}' f(x) = \hat{T}^\dagger(a) \hat{x} \hat{T}(a) f(x)
\]

\[
= \hat{T}(-a) \hat{x} \hat{T}(a) f(x)
\]

\[
= \hat{T}(-a) x f(x - a)
\]

\[
\hat{x}' f(x) = (x + a) f(x)
\]

The transformed operator corresponds to shifting the coordinate system by \(-a \) so positions in this transformed coordinate system are greater by \(a \), just as occurs when directly translating the function.
Example 6.1

Find the operator \(\hat{x}' \) obtained by applying a translation through a distance \(a \) to the operator \(\hat{x} \). That is, what is the action of \(\hat{x}' \) on an arbitrary function \(f(x) \)?

Begin with the definition of the translated operator applied to a test function, but \(\hat{T}^\dagger(a) = \hat{T}(-a) \) so

\[
\hat{x}' f(x) = \hat{T}^\dagger(a) \hat{x} \hat{T}(a) f(x) = \hat{T}(-a) \hat{x} \hat{T}(a) f(x) = \hat{T}(-a) x f(x - a)
\]

\[
\hat{x}' f(x) = (x + a) f(x)
\]

The transformed operator corresponds to shifting the coordinate system by \(-a\) so positions in this transformed coordinate system are greater by \(a \), just as occurs when directly translating the function.

in the same way, we find that \(\hat{p}' = \hat{p} \) and once we know how \(\hat{x} \) and \(\hat{p} \) translate, we can translate any other operator
Example 6.1

Find the operator \(\hat{x}' \) obtained by applying a translation through a distance \(a \) to the operator \(\hat{x} \). That is, what is the action of \(\hat{x}' \) on an arbitrary function \(f(x) \)?

Begin with the definition of the translated operator applied to a test function, but \(\hat{T}^\dagger(a) = \hat{T}(-a) \) so

\begin{align*}
\hat{x}' f(x) &= \hat{T}(a) \hat{x} \hat{T}(a) f(x) \\
&= \hat{T}(-a) \hat{x} \hat{T}(a) f(x) \\
&= \hat{T}(-a) x f(x - a) \\
\hat{x}' f(x) &= (x + a) f(x)
\end{align*}

The transformed operator corresponds to shifting the coordinate system by \(-a\) so positions in this transformed coordinate system are greater by \(a \), just as occurs when directly translating the function.

in the same way, we find that \(\hat{p}' = \hat{p} \) and once we know how \(\hat{x} \) and \(\hat{p} \) translate, we can translate any other operator

\[\hat{Q}'(\hat{x}, \hat{p}) \]
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}^\dagger(a) = \hat{T}(-a)$ so

now apply $\hat{T}(-a)$ to x and $f(x - a)$ according to its definition

The transformed operator corresponds to shifting the coordinate system by $-a$ so positions in this transformed coordinate system are greater by a, just as occurs when directly translating the function.

in the same way, we find that $\hat{p}' = \hat{p}$ and once we know how \hat{x} and \hat{p} translate, we can translate any other operator

$$\hat{Q}'(\hat{x}, \hat{p}) = \hat{T}^\dagger \hat{Q}(\hat{x}, \hat{p}) \hat{T}$$
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}^\dagger(a) = \hat{T}(-a)$ so

now apply $\hat{T}(-a)$ to x and $f(x-a)$ according to its definition

The transformed operator corresponds to shifting the coordinate system by $-a$ so positions in this transformed coordinate system are greater by a, just as occurs when directly translating the function.

in the same way, we find that $\hat{\rho}' = \hat{\rho}$ and once we know how \hat{x} and $\hat{\rho}$ translate, we can translate any other operator

$$\hat{Q}'(\hat{x}, \hat{\rho}) = \hat{T}^\dagger \hat{Q}(\hat{x}, \hat{\rho}) \hat{T} = \hat{Q}(\hat{x}', \hat{\rho}')$$
Example 6.1

Find the operator \hat{x}' obtained by applying a translation through a distance a to the operator \hat{x}. That is, what is the action of \hat{x}' on an arbitrary function $f(x)$?

Begin with the definition of the translated operator applied to a test function, but $\hat{T}^\dagger(a) = \hat{T}(-a)$ so

now apply $\hat{T}(-a)$ to x and $f(x-a)$ according to its definition

The transformed operator corresponds to shifting the coordinate system by $-a$ so positions in this transformed coordinate system are greater by a, just as occurs when directly translating the function.

in the same way, we find that $\hat{p}' = \hat{p}$ and once we know how \hat{x} and \hat{p} translate, we can translate any other operator

$$\hat{Q}'(\hat{x}, \hat{p}) = \hat{T}^\dagger \hat{Q}(\hat{x}, \hat{p}) \hat{T} = \hat{Q}(\hat{x}', \hat{p}') = \hat{Q}(\hat{x} + a, \hat{p})$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible.
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible for an infinitesimal translation δ

Thus the Hamiltonian commutes with the momentum operator

$$\hat{T}(\delta) = e^{-i\delta \hat{p}/\hbar} \approx 1 - i\delta \hbar \hat{p}$$

$$[\hat{H}, \hat{T}(\delta)] = 0$$
$$[\hat{H}, \hat{p}] = 0$$

According to Ehrenfest's Theorem, this leads to conservation of momentum

$$\frac{d}{dt} \langle p \rangle = i\hbar [\hat{H}, \hat{p}] + \langle \frac{\partial \hat{p}}{\partial t} \rangle = 0$$

thus, symmetries imply conservation laws
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible for an infinitesimal translation δ

$$\hat{T}(\delta) = e^{-i\delta \hat{p}/\hbar}$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible

for an infinitesimal translation δ

$$\hat{T}(\delta) = e^{-i\delta \hat{\rho}/\hbar} \approx 1 - i\frac{\delta}{\hbar} \hat{\rho}$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator

$$\hat{T}(\delta) = e^{-i\delta\hat{p}/\hbar} \approx 1 - i\frac{\delta}{\hbar}\hat{p}$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator

$$\hat{T}(\delta) = e^{-i\delta \hat{p}/\hbar} \approx 1 - i\frac{\delta}{\hbar} \hat{p}$$

$$[\hat{H}, \hat{T}(\delta)] = [\hat{H}, 1 - i\frac{\delta}{\hbar} \hat{p}] = 0$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible

for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator

Thus the Hamiltonian commutes with the momentum operator

$$\hat{T}(\delta) = e^{-i\frac{\delta \hat{p}}{\hbar}} \approx 1 - i \frac{\delta \hat{p}}{\hbar}$$

$$[\hat{H}, \hat{T}(\delta)] = [\hat{H}, 1 - i \frac{\delta \hat{p}}{\hbar}] = 0$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible

for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator

Thus the Hamiltonian commutes with the momentum operator

$$\hat{T}(\delta) = e^{-i\hat{p}/\hbar} \approx 1 - i\frac{\delta}{\hbar}\hat{p}$$

$$[\hat{H}, \hat{T}(\delta)] = [\hat{H}, 1 - i\frac{\delta}{\hbar}\hat{p}] = 0$$

$$[\hat{H}, \hat{p}] = 0$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible

for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator

Thus the Hamiltonian commutes with the momentum operator

and according to Ehrenfest’s Theorem, this leads to conservation of momentum
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator:

$$\hat{T}(\delta) = e^{-i\delta \hat{p}/\hbar} \approx 1 - i\frac{\delta}{\hbar} \hat{p}$$

$$[\hat{H}, \hat{T}(\delta)] = [\hat{H}, 1 - i\frac{\delta}{\hbar} \hat{p}] = 0$$

$$[\hat{H}, \hat{p}] = 0$$

Thus the Hamiltonian commutes with the momentum operator

and according to Ehrenfest’s Theorem, this leads to conservation of momentum:

$$\frac{d}{dt} \langle p \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{p}] \rangle + \left\langle \frac{\partial \hat{p}}{\partial t} \right\rangle = 0$$
Continuous translational symmetry

We discussed the Bloch theorem previously in which there is a discrete translational symmetry. In a system with continuous translational symmetry, any choice of a is possible for an infinitesimal translation δ

for continuous translational symmetry, the Hamiltonian must commute with this operator

Thus the Hamiltonian commutes with the momentum operator

and according to Ehrenfest’s Theorem, this leads to conservation of momentum

thus, symmetries imply conservation laws
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$.

Let's see where this definition leads us. The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian since $[H, \hat{Q}] \equiv 0$ we can find simultaneous eigenfunctions of the two: so we choose $|\psi_n\rangle = |f_n\rangle P(q_n)$
Conservation laws

If an operator \(\hat{Q} \) commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value \(\langle Q \rangle \) is independent of time if \(\frac{\partial Q}{\partial t} = 0 \). Let’s see where this definition leads us.
Conservation laws

If an operator \(\hat{Q} \) commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value \(\langle Q \rangle \) is independent of time if \(\frac{\partial Q}{\partial t} = 0 \). Let’s see where this definition leads us.

The probability of getting \(q_n \) when measuring \(Q \) in state \(|\Psi(t)\rangle \) at a time \(t \) is
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\psi(t)\rangle$ at a time t is

$$P(q_n) = |\langle f_n | \psi(t) \rangle|^2$$
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$:

$$P(q_n) = |\langle f_n | \psi(t) \rangle|^2$$
Conservation laws

If an operator \(\hat{Q} \) commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value \(\langle Q \rangle \) is independent of time if \(\partial Q / \partial t = 0 \). Let's see where this definition leads us.

The probability of getting \(q_n \) when measuring \(Q \) in state \(|\Psi(t)\rangle \) at a time \(t \) is where \(Q|f_n\rangle = q_n|f_n\rangle \)

given the time dependence of the wave function

\[
P(q_n) = |\langle f_n | \Psi(t) \rangle |^2
\]
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$

given the time dependence of the wave function

$$P(q_n) = |\langle f_n |\Psi(t)\rangle|^2 \quad |\Psi(t)\rangle = \sum_m e^{-iE_m t/\hbar} c_m|\psi_m\rangle$$
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$

given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian

$$P(q_n) = |\langle f_n | \psi(t) \rangle|^2$$

$$|\psi(t)\rangle = \sum_m e^{-iE_m t/\hbar} c_m |\psi_m\rangle$$
Conservation laws

If an operator \(\hat{Q} \) commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value \(\langle Q \rangle \) is independent of time if \(\partial Q / \partial t = 0 \). Let’s see where this definition leads us.

The probability of getting \(q_n \) when measuring \(Q \) in state \(| \Psi(t) \rangle \) at a time \(t \) is where \(Q | f_n \rangle = q_n | f_n \rangle \)
given the time dependence of the wave function where \(| \psi_m \rangle \) are the eigenfunctions of the Hamiltonian

\[
P(q_n) = |\langle f_n | \psi(t) \rangle|^2
\]

\[
| \psi(t) \rangle = \sum_m e^{-iE_m t/\hbar} c_m | \psi_m \rangle
\]

\[
P(q_n) = \left| \sum_m e^{-iE_m t/\hbar} c_m \langle f_n | \psi_m \rangle \right|^2
\]
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$

given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian since $[H, Q] \equiv 0$ we can find simultaneous eigenfunctions of the two: so we choose $|\psi_n\rangle = |f_n\rangle$

$$P(q_n) = |\langle f_n|\psi(t)\rangle|^2$$

$$|\psi(t)\rangle = \sum_{m} e^{-iE_m t / \hbar} c_m |\psi_m\rangle$$

$$P(q_n) = \left| \sum_{m} e^{-iE_m t / \hbar} c_m \langle f_n|\psi_m\rangle \right|^2$$
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$

given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian

since $[H, Q] \equiv 0$ we can find simultaneous eigenfunctions of the two: so we choose $|\psi_n\rangle = |f_n\rangle$

\[
P(q_n) = \left| \langle f_n | \Psi(t) \rangle \right|^2
\]

\[
|\Psi(t)\rangle = \sum_m e^{-iE_m t / \hbar} c_m |\psi_m\rangle
\]

\[
P(q_n) = \left| \sum_m e^{-iE_m t / \hbar} c_m \langle f_n | \psi_m \rangle \right|^2
\]

\[
= \left| \sum_m e^{-iE_m t / \hbar} c_m \langle \psi_n | \psi_m \rangle \right|^2
\]
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$
given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian

since $[H, Q] \equiv 0$ we can find simultaneous eigenfunctions of the two: so we choose $|\psi_n\rangle = |f_n\rangle$

$$P(q_n) = |\langle f_n | \psi(t) \rangle|^2$$

$$|\psi(t)\rangle = \sum_m e^{-iE_m t / \hbar} c_m |\psi_m\rangle$$

$$P(q_n) = \left| \sum_m e^{-iE_m t / \hbar} c_m \langle f_n | \psi_m \rangle \right|^2$$

$$= \left| \sum_m e^{-iE_m t / \hbar} c_m \langle \psi_n | \psi_m \rangle \right|^2$$

$$= |c_n|^2$$
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$

given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian since $[H, Q] \equiv 0$ we can find simultaneous eigenfunctions of the two: so we choose $|\psi_n\rangle = |f_n\rangle$

the probability of obtaining a particular value q_n is independent of time

$$P(q_n) = |\langle f_n | \psi(t) \rangle|^2$$

$$|\psi(t)\rangle = \sum_m e^{-iE_m t/\hbar} c_m |\psi_m\rangle$$

$$P(q_n) = \left| \sum_m e^{-iE_m t/\hbar} c_m \langle f_n | \psi_m \rangle \right|^2$$

$$= \left| \sum_m e^{-iE_m t/\hbar} c_m \langle \psi_n | \psi_m \rangle \right|^2$$

$$= |c_n|^2$$
Conservation laws

If an operator \hat{Q} commutes with the Hamiltonian, then by the Ehrenfest relation its expectation value $\langle Q \rangle$ is independent of time if $\partial Q / \partial t = 0$. Let’s see where this definition leads us.

The probability of getting q_n when measuring Q in state $|\Psi(t)\rangle$ at a time t is where $Q|f_n\rangle = q_n|f_n\rangle$

given the time dependence of the wave function where $|\psi_m\rangle$ are the eigenfunctions of the Hamiltonian

since $[H, Q] \equiv 0$ we can find simultaneous eigenfunctions of the two: so we choose $|\psi_n\rangle = |f_n\rangle$

the probability of obtaining a particular value q_n is independent of time

the two definitions of conservation of Q are equivalent
Parity in 1D

In one dimension, the parity operator, \(\hat{\Pi} \) inverts space.
In one dimension, the parity operator, $\hat{\Pi}$ inverts space

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space

This operator is its own inverse, is Hermitian, and thus unitary

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space

this operator is its own inverse, is Hermitian, and thus unitary

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space
this operator is its own inverse, is Hermitian, and thus unitary
operators transform under spatial inversion as

\[
\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)
\]

\[
\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^{\dagger}
\]

\[
\hat{Q}' = \hat{\Pi}^{\dagger}\hat{Q}\hat{\Pi}
\]
Parity in 1D

In one dimension, the parity operator, \(\hat{\Pi} \) inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

specifically the position and momentum operators are odd under parity

\[
\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)
\]

\[
\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger
\]

\[
\hat{Q}' = \hat{\Pi}^\dagger \hat{Q} \hat{\Pi}
\]
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space
this operator is its own inverse, is Hermitian, and thus unitary
operators transform under spatial inversion as
specifically the position and momentum operators are odd under parity

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$

$$\hat{Q}' = \hat{\Pi}^\dagger \hat{Q} \hat{\Pi}$$

$$\hat{x}' = \hat{\Pi}^\dagger \hat{x} \hat{\Pi} = -\hat{x}$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space
this operator is its own inverse, is Hermitian, and thus unitary
operators transform under spatial inversion as
specifically the position and momentum operators are odd under parity

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$

$$\hat{Q}' = \hat{\Pi}^\dagger \hat{Q} \hat{\Pi}$$

$$\hat{x}' = \hat{\Pi}^\dagger \hat{x} \hat{\Pi} = -\hat{x}$$

$$\hat{p}' = \hat{\Pi}^\dagger \hat{p} \hat{\Pi} = -\hat{p}$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

specifically the position and momentum operators are odd under parity thus any operator \hat{Q} must transform under parity as

\[
\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)
\]

\[
\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger
\]

\[
\hat{Q}' = \hat{\Pi}^\dagger\hat{Q}\hat{\Pi}
\]

\[
\hat{x}' = \hat{\Pi}^\dagger\hat{x}\hat{\Pi} = -\hat{x}
\]

\[
\hat{p}' = \hat{\Pi}^\dagger\hat{p}\hat{\Pi} = -\hat{p}
\]
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space. This operator is its own inverse, is Hermitian, and thus unitary. Operators transform under spatial inversion as:

Specifically, the position and momentum operators are odd under parity; thus any operator \hat{Q} must transform under parity as:

- $\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$
- $\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$
- $\hat{Q}' = \hat{\Pi}^\dagger \hat{Q}\hat{\Pi}$
- $\hat{x}' = \hat{\Pi}^\dagger \hat{x}\hat{\Pi} = -\hat{x}$
- $\hat{p}' = \hat{\Pi}^\dagger \hat{p}\hat{\Pi} = -\hat{p}$
- $\hat{Q}'(\hat{x}, \hat{p}) = \hat{Q}(-\hat{x}, -\hat{p})$
Parity in 1D

In one dimension, the parity operator, \(\hat{\Pi} \) inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

specifically the position and momentum operators are odd under parity thus any operator \(\hat{Q} \) must transform under parity as

a system has inversion symmetry if the Hamiltonian is unchanged by a parity transformation
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space
this operator is its own inverse, is Hermitian, and thus unitary
operators transform under spatial inversion as
specifically the position and momentum operators are odd under parity thus any operator \hat{Q} must transform under parity as
a system has inversion symmetry if the Hamiltonian is unchanged by a parity transformation

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$

$$\hat{Q}' = \hat{\Pi}^\dagger \hat{Q} \hat{\Pi}$$

$$\hat{x}' = \hat{\Pi}^\dagger \hat{x} \hat{\Pi} = -\hat{x}$$

$$\hat{p}' = \hat{\Pi}^\dagger \hat{p} \hat{\Pi} = -\hat{p}$$

$$\hat{Q}'(\hat{x}, \hat{p}) = \hat{Q}(-\hat{x}, -\hat{p})$$

$$\hat{H}' = \hat{\Pi}^\dagger \hat{H} \hat{\Pi} = \hat{H}$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

specifically the position and momentum operators are odd under parity thus any operator \hat{Q} must transform under parity as

a system has inversion symmetry if the Hamiltonian is unchanged by a parity transformation

$$\hat{H} = \hat{\Pi}^\dagger \hat{H} \hat{\Pi}$$

$$\hat{\Pi} \psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$

$$\hat{Q}' = \hat{\Pi}^\dagger \hat{Q} \hat{\Pi}$$

$$\hat{x}' = \hat{\Pi}^\dagger \hat{x} \hat{\Pi} = -\hat{x}$$

$$\hat{p}' = \hat{\Pi}^\dagger \hat{p} \hat{\Pi} = -\hat{p}$$

$$\hat{Q}'(\hat{x}, \hat{p}) = \hat{Q}(-\hat{x}, -\hat{p})$$

$$\hat{H}' = \hat{\Pi}^\dagger \hat{H} \hat{\Pi} = \hat{H}$$
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$ inverts space
this operator is its own inverse, is Hermitian, and thus unitary
operators transform under spatial inversion as
specifically the position and momentum operators are odd under parity thus any operator \hat{Q} must transform under parity as
a system has inversion symmetry if the Hamiltonian is unchanged by a parity transformation
Parity in 1D

In one dimension, the parity operator, \(\hat{\Pi} \) inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

specifically the position and momentum operators are odd under parity thus any operator \(\hat{Q} \) must transform under parity as

a system has inversion symmetry if the Hamiltonian is unchanged by a parity transformation

\[
\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)
\]

\[
\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger
\]

\[
\hat{Q}' = \hat{\Pi}^\dagger\hat{Q}\hat{\Pi}
\]

\[
\hat{x}' = \hat{\Pi}^\dagger\hat{x}\hat{\Pi} = -\hat{x}
\]

\[
\hat{\rho}' = \hat{\Pi}^\dagger\hat{\rho}\hat{\Pi} = -\hat{\rho}
\]

\[
\hat{Q}'(\hat{x}, \hat{\rho}) = \hat{Q}(-\hat{x}, -\hat{\rho})
\]

\[
\hat{H}' = \hat{\Pi}^\dagger\hat{H}\hat{\Pi} = \hat{H}
\]
Parity in 1D

In one dimension, the parity operator, $\hat{\Pi}$, inverts space

this operator is its own inverse, is Hermitian, and thus unitary

operators transform under spatial inversion as

specifically the position and momentum operators are odd under parity thus any operator \hat{Q} must transform under parity as

a system has inversion symmetry if the Hamiltonian is unchanged by a parity transformation

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}^{-1} = \hat{\Pi} = \hat{\Pi}^\dagger$$

$$\hat{Q}' = \hat{\Pi}^\dagger \hat{Q} \hat{\Pi}$$

$$\hat{x}' = \hat{\Pi}^\dagger \hat{x} \hat{\Pi} = -\hat{x}$$

$$\hat{p}' = \hat{\Pi}^\dagger \hat{p} \hat{\Pi} = -\hat{p}$$

$$\hat{Q}'(\hat{x}, \hat{p}) = \hat{Q}(-\hat{x}, -\hat{p})$$

$$\hat{H}' = \hat{\Pi}^\dagger \hat{H} \hat{\Pi} = \hat{H}$$

$$\hat{\Pi} \hat{H} = \hat{\Pi} \hat{H}^\dagger \hat{H} \hat{\Pi} \rightarrow \hat{\Pi} \hat{H} = \hat{H} \hat{\Pi} \rightarrow [\hat{H}, \hat{\Pi}] = 0$$
Parity in 1D

For a Hamiltonian which describes a particle of mass m in a one-dimensional potential $V(x)$, inversion symmetry means that $V(x) \equiv V(-x)$, an even function of position.

Because $\hat{\Pi}$ and \hat{H} commute, we can find common eigenfunctions $\psi_n(x)$ such that $\hat{\Pi}\psi_n(x) = \psi_n(-x) = \pm \psi_n(x)$ since the eigenvalues of parity can only be ± 1.

Thus the eigenfunctions of such a Hamiltonian are either even or odd under parity and by Ehrenfest's Theorem, we have $\frac{d}{dt} \langle \Pi \rangle = i\hbar \langle [\hat{H}, \hat{\Pi}] \rangle = 0$ which means that parity is conserved in time, that is an even function under parity will remain even for all time and an odd function under parity will remain odd for all time.
Parity in 1D

For a Hamiltonian which describes a particle of mass m in a one-dimensional potential $V(x)$, inversion symmetry means that $V(x) \equiv V(-x)$, an even function of position.

Because $\hat{\Pi}$ and \hat{H} commute, we can find common eigenfunctions $\psi_n(x)$ such that

$$\hat{\Pi} \psi_n(x) = \psi_n(-x) = \pm \psi_n(x)$$

since the eigenvalues of parity can only be ± 1. Thus the eigenfunctions of such a Hamiltonian are either even or odd under parity and by Ehrenfest's Theorem, we have

$$\frac{d}{dt} \langle \Pi \rangle = i \hbar \langle [\hat{H}, \hat{\Pi}] \rangle = 0$$

which means that parity is conserved in time, that is an even function under parity will remain even for all time and an odd function under parity will remain odd for all time.
Parity in 1D

For a Hamiltonian which describes a particle of mass m in a one-dimensional potential $V(x)$, inversion symmetry means that $V(x) \equiv V(-x)$, an even function of position.

Because $\hat{\Pi}$ and \hat{H} commute, we can find common eigenfunctions $\psi_n(x)$ such that

$$\hat{\Pi}\psi_n(x) = \psi_n(-x)$$

Thus the eigenfunctions of such a Hamiltonian are either even or odd under parity and by Ehrenfest’s Theorem, we have

$$\frac{d}{dt}\left<\hat{\Pi}\right> = i\hbar\left<[\hat{H}, \hat{\Pi}]\right> = 0$$

which means that parity is conserved in time, that is an even function under parity will remain even for all time and an odd function under parity will remain odd for all time.
Parity in 1D

For a Hamiltonian which describes a particle of mass m in a one-dimensional potential $V(x)$, inversion symmetry means that $V(x) \equiv V(-x)$, an even function of position.

Because $\hat{\Pi}$ and \hat{H} commute, we can find common eigenfunctions $\psi_n(x)$ such that

$$\hat{\Pi}\psi_n(x) = \psi_n(-x) = \pm \psi_n(x)$$

since the eigenvalues of parity can only be ± 1.
Parity in 1D

For a Hamiltonian which describes a particle of mass \(m \) in a one-dimensional potential \(V(x) \), inversion symmetry means that
\[V(x) \equiv V(-x), \]
an even function of position

Because \(\hat{\Pi} \) and \(\hat{H} \) commute, we can find common eigenfunctions \(\psi_n(x) \) such that
\[\hat{\Pi} \psi_n(x) = \psi_n(-x) = \pm \psi_n(x) \]
since the eigenvalues of parity can only be \(\pm 1 \)

Thus the eigenfunctions of such a Hamiltonian are either even or odd under parity and by Eherenfest's Theorem, we have
Parity in 1D

For a Hamiltonian which describes a particle of mass \(m \) in a one-dimensional potential \(V(x) \), inversion symmetry means that \(V(x) \equiv V(-x) \), an even function of position.

Because \(\hat{\Pi} \) and \(\hat{H} \) commute, we can find common eigenfunctions \(\psi_n(x) \) such that

\[
\hat{\Pi} \psi_n(x) = \psi_n(-x) = \pm \psi_n(x)
\]

since the eigenvalues of parity can only be \(\pm 1 \).

Thus the eigenfunctions of such a Hamiltonian are either even or odd under parity and by Eherenfest's Theorem, we have

\[
\frac{d}{dt} \langle \Pi \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{\Pi}] \rangle = 0
\]
Parity in 1D

For a Hamiltonian which describes a particle of mass m in a one-dimensional potential $V(x)$, inversion symmetry means that $V(x) \equiv V(-x)$, an even function of position.

Because $\hat{\Pi}$ and \hat{H} commute, we can find common eigenfunctions $\psi_n(x)$ such that

$$\hat{\Pi}\psi_n(x) = \psi_n(-x) = \pm\psi_n(x)$$

since the eigenvalues of parity can only be ± 1.

Thus the eigenfunctions of such a Hamiltonian are either even or odd under parity and by Eherenfest's Theorem, we have

$$\frac{d}{dt}\langle\Pi\rangle = \frac{i}{\hbar}\langle[H, \hat{\Pi}]\rangle = 0$$

which means that parity is conserved in time, that is an even function under parity will remain even for all time and an odd function under parity will remain odd for all time.
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin.
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin

\[\hat{\Pi} \psi(r) = \psi'(r) = \psi(-r) \]
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin

the \(\hat{r} \) and \(\hat{p} \) operators and any arbitrary operator transform as

\[
\hat{\Pi} \psi(\vec{r}) = \psi'(\vec{r}) = \psi(-\vec{r})
\]

The Hamiltonian in three dimensions will have parity when \(V(-\vec{r}) = V(\vec{r}) \) which is true for all central potentials

The eigenstates of the hydrogen atom are in fact, also eigenstates of parity

\[
\hat{\Pi} \psi_{n\ell m}(\vec{r},\theta,\phi) = (-1)^\ell \psi_{n\ell m}(\vec{r},\theta,\phi)
\]

\[
\psi_{n\ell m}(\vec{r},\theta,\phi) = R_{n\ell}(\vec{r}) Y_{m\ell}(\theta,\phi)
\]
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin. The \(\hat{r} \) and \(\hat{p} \) operators and any arbitrary operator transform as:

\[
\hat{\Pi} \psi (r) = \psi' (r) = \psi (-r) \\
\hat{r}' = \hat{\Pi} \hat{r} \hat{\Pi} = -\hat{r} \\
\hat{p}' = \hat{\Pi} \hat{p} \hat{\Pi} = -\hat{p}
\]
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin:

\[\hat{\Pi} \psi(r) = \psi'(r) = \psi(-r) \]
\[\hat{r}' = \hat{\Pi}^{\dagger} \hat{r} \hat{\Pi} = -\hat{r} \]
\[\hat{p}' = \hat{\Pi}^{\dagger} \hat{p} \hat{\Pi} = -\hat{p} \]
\[\hat{Q}'(\hat{r}, \hat{p}) = \hat{\Pi}^{\dagger} \hat{Q}(\hat{r}, \hat{p}) \hat{\Pi} = \hat{Q}(-\hat{r}, -\hat{p}) \]
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin.
The \(\hat{r} \) and \(\hat{p} \) operators and any arbitrary operator transform as

\[
\hat{\Pi} \psi(r) = \psi'(r) = \psi(-r)
\]
\[
\hat{r}' = \hat{\Pi}^{\dagger} \hat{r} \hat{\Pi} = -\hat{r}
\]
\[
\hat{p}' = \hat{\Pi}^{\dagger} \hat{p} \hat{\Pi} = -\hat{p}
\]
\[
\hat{Q}'(\hat{r}, \hat{p}) = \hat{\Pi}^{\dagger} \hat{Q}(\hat{r}, \hat{p}) \hat{\Pi} = \hat{Q}(-\hat{r}, -\hat{p})
\]

The Hamiltonian in three dimensions will have parity when \(V(-r) = V(r) \)
which is true for all central potentials.
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin.

The operators \(\hat{r} \) and \(\hat{p} \) operators and any arbitrary operator transform as

\[
\hat{\Pi} \psi(r) = \psi'(r) = \psi(-r)
\]
\[
\hat{r}' = \hat{\Pi}^\dagger \hat{r} \hat{\Pi} = -\hat{r}
\]
\[
\hat{p}' = \hat{\Pi}^\dagger \hat{p} \hat{\Pi} = -\hat{p}
\]
\[
\hat{Q}'(\hat{r}, \hat{p}) = \hat{\Pi}^\dagger \hat{Q}(\hat{r}, \hat{p}) \hat{\Pi} = \hat{Q}(-\hat{r}, -\hat{p})
\]

The Hamiltonian in three dimensions will have parity when \(V(-r) = V(r) \) which is true for all central potentials.

The eigenstates of the hydrogen atom are in fact, also eigenstates of parity.
Parity in 3D

In three dimensions, the parity operator inverts the system through the origin

the \(\hat{r} \) and \(\hat{p} \) operators and any arbitrary operator transform as

\[
\hat{\Pi} \psi(r) = \psi'(r) = \psi(-r)
\]
\[
\hat{r}' = \hat{\Pi}^{\dagger} \hat{r} \hat{\Pi} = -\hat{r}
\]
\[
\hat{p}' = \hat{\Pi}^{\dagger} \hat{p} \hat{\Pi} = -\hat{p}
\]
\[
\hat{Q}'(\hat{r}, \hat{p}) = \hat{\Pi}^{\dagger} \hat{Q}(\hat{r}, \hat{p}) \hat{\Pi} = \hat{Q}(-\hat{r}, -\hat{p})
\]

The Hamiltonian in three dimensions will have parity when \(V(-r) = V(r) \) which is true for all central potentials

The eigenstates of the hydrogen atom are in fact, also eigenstates of parity

\[
\hat{\Pi} \psi_{nlm}(r, \theta, \phi) = (-1)^l \psi_{nlm}(r, \theta, \phi), \quad \psi_{nlm}(r, \theta, \phi) = R_{nl}(r) Y^m_l(\theta, \phi)
\]
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, $\langle a | \hat{Q} | b \rangle$, is zero based on symmetry.
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, \(\langle a|\hat{Q}|b\rangle \), is zero based on symmetry.

A particularly important operator is the electric dipole operator, \(\hat{p}_e = q\hat{r} \) whose selection rules determine which atomic transitions are allowed and which are forbidden.
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, $\langle a | \hat{Q} | b \rangle$, is zero based on symmetry.

A particularly important operator is the electric dipole operator, $\hat{p}_e = q \hat{r}$ whose selection rules determine which atomic transitions are allowed and which are forbidden.

It is evident that \hat{p}_e is odd under parity because \hat{r} is odd.

$$\hat{\Pi} \hat{p}_e \hat{\Pi} = -\hat{p}_e$$
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, $\langle a|\hat{Q}|b\rangle$, is zero based on symmetry.

A particularly important operator is the electric dipole operator, $\hat{p}_e = q\hat{r}$ whose selection rules determine which atomic transitions are allowed and which are forbidden.

It is evident that \hat{p}_e is odd under parity because \hat{r} is odd.

$$\hat{\Pi}^\dagger \hat{p}_e \hat{\Pi} = -\hat{p}_e$$

Consider the matrix elements of the electric dipole operator between two atomic states ψ_{nlm}, and $\psi_{n'l'm'}$
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, \(\langle a | \hat{Q} | b \rangle \), is zero based on symmetry.

A particularly important operator is the electric dipole operator, \(\hat{p}_e = q \hat{r} \) whose selection rules determine which atomic transitions are allowed and which are forbidden.

It is evident that \(\hat{p}_e \) is odd under parity because \(\hat{r} \) is odd.

\[\hat{\Pi} \hat{p}_e \hat{\Pi} = -\hat{p}_e \]

Consider the matrix elements of the electric dipole operator between two atomic states \(\psi_{nlm} \), and \(\psi_{n'l'm'} \)

\[\langle n'l'm' | \hat{p}_e | nlm \rangle = -\langle n'l'm' | \hat{\Pi} \hat{p}_e \hat{\Pi} | nlm \rangle \]
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, $\langle a | \hat{Q} | b \rangle$, is zero based on symmetry.

A particularly important operator is the electric dipole operator, $\hat{p}_e = q \hat{r}$ whose selection rules determine which atomic transitions are allowed and which are forbidden.

It is evident that \hat{p}_e is odd under parity because \hat{r} is odd.

$$\hat{\Pi}^\dagger \hat{p}_e \hat{\Pi} = -\hat{p}_e$$

Consider the matrix elements of the electric dipole operator between two atomic states ψ_{nlm}, and $\psi_{n'l'm'}$

$$\langle n'l'm' | \hat{p}_e | nlm \rangle = -\langle n'l'm' | \hat{\Pi}^\dagger \hat{p}_e \hat{\Pi} | nlm \rangle$$

$$= -\langle n'l'm' | (-1)^{l''} \hat{p}_e (-1)^l | nlm \rangle$$
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, $\langle a | \hat{Q} | b \rangle$, is zero based on symmetry.

A particularly important operator is the electric dipole operator, $\hat{p}_e = q \hat{r}$ whose selection rules determine which atomic transitions are allowed and which are forbidden.

It is evident that \hat{p}_e is odd under parity because \hat{r} is odd.

\[\hat{\Pi}^\dagger \hat{p}_e \hat{\Pi} = -\hat{p}_e \]

Consider the matrix elements of the electric dipole operator between two atomic states $\psi_{n'l'm'}$, and ψ_{nlm}

\[\langle n'l'm' | \hat{p}_e | nlm \rangle = -\langle n'l'm' | \hat{\Pi}^\dagger \hat{p}_e \hat{\Pi} | nlm \rangle \]

\[= -\langle n'l'm' | (-1)^{l'} \hat{p}_e (-1)^{l} | nlm \rangle \]

\[= (-1)^{l+l'+1} \langle n'l'm' | \hat{p}_e | nlm \rangle \]
Parity selection rules

Selection rules, which will be very important when we talk about time-dependent phenomena, indicate when a matrix element which couples two states, $\langle a|\hat{Q}|b\rangle$, is zero based on symmetry.

A particularly important operator is the electric dipole operator, $\hat{p}_e = q\hat{r}$ whose selection rules determine which atomic transitions are allowed and which are forbidden.

It is evident that \hat{p}_e is odd under parity because \hat{r} is odd.

$$\hat{\Pi}^\dagger \hat{p}_e \hat{\Pi} = -\hat{p}_e$$

Consider the matrix elements of the electric dipole operator between two atomic states ψ_{nlm}, and $\psi_{n'l'm'}$

$$\langle n'l'm'|\hat{p}_e|nlm\rangle = -\langle n'l'm'|\hat{\Pi}^\dagger \hat{p}_e \hat{\Pi}|nlm\rangle$$

$$= -\langle n'l'm'|(-1)^{l'}\hat{p}_e(-1)^l|nlm\rangle$$

$$= (-1)^{l+l'+1}\langle n'l'm'|\hat{p}_e|nlm\rangle = 0 \quad \text{if } l + l' = 2n$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis.
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi)$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi)$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \frac{d^n \psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi-\varphi=\phi}$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \frac{d^n \psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi-\varphi=\phi}$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \left. \frac{d^n\psi(\phi - \varphi)}{d(\phi - \varphi)^n} \right|_{\phi - \varphi = \phi}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \left. \frac{d^n\psi(\phi)}{d\phi^n} \right|_{\phi}$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[(\phi - \varphi) - \phi \right]^n \frac{d^n \psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi - \varphi = \phi}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n \psi(\phi)}{d\phi^n} \bigg|_{\phi} = \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n}{d\phi^n} \psi(\phi)$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\varphi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \frac{d^n\psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi - \varphi = \phi}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n\psi(\phi)}{d\phi^n} \bigg|_{\phi} = \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n}{d\phi^n} \psi(\phi)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \frac{d}{i d\phi}\right)^n \psi(\phi)$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[(\phi - \varphi) - \phi\right]^n \frac{d^n\psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi-\varphi=\phi}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \left[\frac{d^n\psi(\phi)}{d\phi^n}\right]_{\phi} = \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n\psi(\phi)}{d\phi^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(-i\varphi \frac{\hbar}{\hbar} \frac{d}{i \ d\phi}\right)^n \psi(\phi)$$
Rotation about the z axis

The operator \(\hat{R}_z(\varphi) \) rotates the function an angle \(\varphi \) about the z axis

\[
\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)
\]

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the \(r \) and \(\theta \) variables)

\[
\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \frac{d^n\psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi - \varphi = \phi}
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n\psi(\phi)}{d\phi^n} \bigg|_{\phi} = \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n\psi(\phi)}{d\phi^n} \psi(\phi)
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \frac{\hat{d}}{d\phi} \right)^n \psi(\phi) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \hat{L}_z \right)^n \psi(\phi)
\]
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \frac{d^n\psi(\phi - \varphi)}{d(\phi - \varphi)^n} \bigg|_{\phi-\varphi=\phi}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n\psi(\phi)}{d\phi^n} \bigg|_{\phi} = \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n}{d\phi^n}\psi(\phi)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \frac{d}{d\phi} \right)^n \psi(\phi) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \hat{L}_z \right)^n \psi(\phi)$$

$$= e^{-i\varphi\hat{L}_z/\hbar}\psi(\phi)$$
Rotation about the z axis

The operator $\hat{R}_z(\varphi)$ rotates the function an angle φ about the z axis

$$\hat{R}_z(\phi)\psi(r, \theta, \phi) = \psi'(r, \theta, \phi) = \psi(r, \theta, \phi - \varphi)$$

just as with the translation operator we can determine the generator of rotations starting with a Taylor series (hiding the r and θ variables)

$$\hat{R}_z(\varphi)\psi(\phi) = \psi(\phi - \varphi) = \sum_{n=0}^{\infty} \frac{1}{n!} [(\phi - \varphi) - \phi]^n \left. \frac{d^n \psi(\phi - \varphi)}{d(\phi - \varphi)^n} \right|_{\phi - \varphi = \phi}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \left. \frac{d^n \psi(\phi)}{d\phi^n} \right|_{\phi} = \sum_{n=0}^{\infty} \frac{1}{n!} (-\varphi)^n \frac{d^n \psi(\phi)}{d\phi^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \frac{d}{i d\phi} \right)^n \psi(\phi) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-i\varphi}{\hbar} \hat{L}_z \right)^n \psi(\phi)$$

$$= e^{-i\varphi \hat{L}_z/\hbar} \psi(\phi) \quad \longrightarrow \quad \hat{R}_z(\varphi) = e^{-i\varphi \hat{L}_z/\hbar}$$