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Aharonov-Bohm effect

THE

PHYSICAL REVIEW

A jornt of peimetel and herstcl s stablsbed by E. L. Nichols in 1893
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Aharonov-Bohm theory

Consider the more general case where a particle moves through a region
where B=V x A=0but A#0

for a static potential, A, OV 1 /h S\2
the Schrodinger equation be- ’ha oy (I-V - qA) + ViV
comes

this can be simplified by sub- g(r) = Z/ Z(?) -dr’
stituting _ © ,
v = o8y’ VV = e€(iVg)V + e&(VV')
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Consider the more general case where a particle moves through a region
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the Schrodinger equation be- ’ha = |2m (I-V - qA) +Viv
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Consider the more general case where a particle moves through a region
where B=V x A=0but A#0

for a static potential, A, e\, 1 /h S\2
the Schrodinger equation be- ’ha = |2m (I-V - qA) +Viv
comes

-
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Aharonov-Bohm theory

Substituting into the Schro- v 1 oo, o
dinger equation /he’gﬁ = —%h eV 4 VetV
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Aharonov-Bohm theory
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Aharonov-Bohm theory

Substituting into the Schro- v’
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) s.at|sf|e.s the_’Schrodmger iha _ V2U' 4 vy
equation without A ot 2m

thus the solution of a system where there
is a vector potential is trivial, just add on
a phase factor '8
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Aharonov-Bohm theory
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dinger equation /he’gﬁ = —%h eV 4 VetV
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) s.at|sf|e.s the_’ Schrodinger iha— ERNLCHR vE N VAT

equation without A ot 2m

B

thus the solution of a system where there
is a vector potential is trivial, just add on
a phase factor '8

Aharonov & Bohm proposed an experi-
ment where an electron beam is split in
two and passed on either side of a long Boom
solenoid before being recombined split

Beam
recombined

solenoid §
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thus the solution of a system where there
is a vector potential is trivial, just add on
a phase factor '8

Aharonov & Bohm proposed an experi-
ment where an electron beam is split in
two and passed on either side of a long Boom
solenoid before being recombined split
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phases g+ = +(q®/2h)
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Aharonov-Bohm theory

Substituting into the Schro- N\ 1 5 o, -

dinger equation /he’gﬁ = —%h eV 4 VetV
/ e - v’ h2

) s.at|sf|e.s the_’ Schrodinger iha— ERNLCHR vE N VAT

equation without A ot 2m

B

thus the solution of a system where there
is a vector potential is trivial, just add on
a phase factor '8

Aharonov & Bohm proposed an experi-
ment where an electron beam is split in
two and passed on either side of a long Boom
solenoid before being recombined split

Beam
recombined

solenoid §

the two beams should arrive with different
phases g+ = +(q®/2h)

This is a so-called non-holonomic process which involves Berry's Phase
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Aharonov-Bohm experiment
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Aharonov-Bohm experiment

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

s: electron source

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

what about the effect of stray fields

el ri—gq' in region @ which can curve the
So electron beams electrostatically?
L
el a

s: electron source

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

what about the effect of stray fields

el ri—a’ in region @ which can curve the
SO electron beams electrostatically?
L ‘ in the biprism, the quantum ef-
el — a fect exactly cancels the stray field
leaving the interference pattern un-
s: electron source changed

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

el —_ g
sO
|

el L- a

s: electron source

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

what about the effect of stray fields
in region a’ which can curve the
electron beams electrostatically?

in the biprism, the quantum ef-
fect exactly cancels the stray field
leaving the interference pattern un-
changed

a field solely in region a will lead
to a quantum effect with the inter-
ference fringes moving through the
envelope

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

el —_ g
sO
|

el L- a

s: electron source

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

modified electron microscope,

what about the effect of stray fields
in region a’ which can curve the
electron beams electrostatically?

in the biprism, the quantum ef-
fect exactly cancels the stray field
leaving the interference pattern un-
changed

a field solely in region a will lead
to a quantum effect with the inter-
ference fringes moving through the
envelope

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

el —_ g
sO
|

el L- a

s: electron source

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

what about the effect of stray fields
in region a’ which can curve the
electron beams electrostatically?

in the biprism, the quantum ef-
fect exactly cancels the stray field
leaving the interference pattern un-
changed

a field solely in region a will lead
to a quantum effect with the inter-
ference fringes moving through the
envelope

modified electron microscope, biprism consists of an aluminized quartz
fiber (f) and two grounded metal plates (e),

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

el —_ g
sO
|

el L- a

s: electron source

o: observing plane

e, f: biprism

a: confined field region
a’: extended field region

what about the effect of stray fields
in region a’ which can curve the
electron beams electrostatically?

in the biprism, the quantum ef-
fect exactly cancels the stray field
leaving the interference pattern un-
changed

a field solely in region a will lead
to a quantum effect with the inter-
ference fringes moving through the
envelope

modified electron microscope, biprism consists of an aluminized quartz
fiber (f) and two grounded metal plates (e), Aharonov-Bohm effect will
produce a shift of n fringes for ® = nhc/e

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) is with no additional field ap-
plied in extended region

(a) (b)

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) is with no additional field ap-
plied in extended region

(b) has 25mG, which alone would
invert the fringe, applied with no
visible fringe shift

(a) (b)

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) is with no additional field ap-
plied in extended region

(b) has 25mG, which alone would
invert the fringe, applied with no
visible fringe shift

up to 300 mG applied in region &
showed no shift

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) is with no additional field ap-
plied in extended region

(b) has 25mG, which alone would
invert the fringe, applied with no
visible fringe shift

up to 300 mG applied in region &
showed no shift

(a) (b)

This calibration experiment shows that the Aharonov-Bhom effect is
present and balances the electrostatic fringe shifts in a region where there
is both a flux AND a field

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) (b) (c)

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) a tapered iron whisker produces
a confined field and flux with a gra-
dient along the z-axis manifested in
tilted fringes

(a) (b) (c)

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) (b) (c)

(a) a tapered iron whisker produces
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(a) (b) (c)

(a) a tapered iron whisker produces
a confined field and flux with a gra-
dient along the z-axis manifested in
tilted fringes

(b) direct imaging, with the whisker
outside the shadow of the biprism
fiber, due to Fresnel diffraction
in the shadow of the fiber shows
biprism fringes with tilted fringes
just to the side

(c) higher taper, again using Fresnel diffraction in fiber shadow but with
biprism removed shows more highly tilted fringes

Chambers says: “l am indebted for Mr. Aharonov and Dr. Bohm for
telling me of their work before publication..”
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tunnel barriers permit the application of a
potential which is used to inject electrons
and holes into opposite arms of the ring
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electron and hole recombine at the other

tunnel junction with a relative phase shift “Magneto-electric Aharonov-Bohm effect in metal
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tunnel barriers permit the application of a
potential which is used to inject electrons
and holes into opposite arms of the ring

electron and hole recombine at the other
tunnel junction with a relative phase shift
dependent on the enclosed magnetic flux
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by diffusion time of electrons
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Aharonov-Bohm oscillations
are seen also for constant
magnetic field as applied po-
tential is varied

periodicity as seen in se-
quence a — b — c is defined
by diffusion time of electrons
& holes around the ring

Aharonov-Bohm effect continues to be an active area of research nearly 60
years after it was first proposed!

“Magneto-electric Aharonov-Bohm effect in metal rings,” A. van Oudenaarden, et al., Nature 391, 768-770 (1998).
“The Aharonov-Bohm effects: Variations on a subtle theme,” H. Batelaan & A. Tonomura, Physics Today 62 (9), 38-43 (2009).
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Suppose the system
starts in state |¢;) at
time t;
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found in at time tr
given that the adia-
batic parameter Q <
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classically, the system must remain in the same well (no tunneling) and
thus must jump from mixed state |1)_) to mixed state |¢)4) staying in |¢;)
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Berry's double well

Ey Ea

[Or>

hog

o)

o>

[0r)

-«

ho,

E

i

Suppose the system
starts in state |¢;) at
time t;

what state will it be
found in at time tr
given that the adia-
batic parameter Q <
wi,wWRr?

classically, the system must remain in the same well (no tunneling) and
thus must jump from mixed state |1)_) to mixed state |¢)4) staying in |¢;)

according to the quantum adiabatic approximation, however, the system
will remain in [¢)_) throughout and thus find itself in [¢r) at tf
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where the boundary condition is that a;(t;) = 1 and ar(t;) = 0 and
|ac? + Jagl* =1

in this basis, the Hamiltonian is a

2 x 2 matrix e < E/(t) A(t)/2 )

and the eigenvalues become A(t)/2  Eg(t)

Ex = 3[Ec(t) + Er(t)] + 5V/[EL(t) — Er(D)]? + A(1)?

where A(0) is the gap at the crossing point
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Berry's double well

Applying the Schrodinger equation to the general time dependent solution
gives determining equations for the coefficients a;(t) and ag(t)
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applying the WKB approximation gives an expression for the energy gap
A(0) and thus the probability of finding the system in |¢;) at tf

|a(te)]? = o~ [V@LwR/Qle 2K /P

ar—
K= vam(V(q,t) - E)dq
qL+
where e 2K/ is the tunnelling probability
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Berry's double well

|ac(te)]? = o~ [V@LwR/Qle /P

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 21/28



Berry's double well

|2y (tr)|? = e [V@L@R/Qe M _ =1/

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 21/28



Berry's double well

1, h—0

|3[_(tf)|2 — e—[«/wLwR/Q]e*M/h _ e—l/)\ |aL(tf)|2 —
0, -0
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Berry's double well
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thus the semiclassical and quantum adiabatic limits give opposite results!
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Berry's double well

1, h—0
0, -0

thus the semiclassical and quantum adiabatic limits give opposite results!

|a[_(tf)|2 — e—[‘/wLwR/Q]e*M/h _ e—l/)\ |aL(tf)|2 _ {
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0, Q2—0

the numerical solu-

tion as a function

of the parameter A

shows how this evo-
lution takes place
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Quantum paradoxes and other fun stuff

“About your cat, Mr. Schrodinger — | have good news and bad news ..."
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Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”
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value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If 4 is an eigenfuction of an opera-

tor A, then we know its expectation A = a)
value, a h o
P=Tox

for example take the momentum
operator and the eigenfuction

ho Bli O\ o
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)= eipgx/h

thus the momentum in state % is said to be real
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Einstein Podolsky Rosen paradox

If Avy = ayp does not hold, how-
ever, A cannot be said to have a
particular value as we know from
the position operator g
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([A, B] # 0) then precise knowledge of one precludes such knowledge of
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Einstein Podolsky Rosen paradox

If Avy = ayp does not hold, how- '
ever, A cannot be said to have a qy = xelPox/h # ay

particular value as we know from b b
the position operator g P(a, b) = / Y pdx = / dx=b—a
a a

there is an equal probability of measuring any value of the position
this is a specific instance of the fact that if two operators do not commute

([A, B] # 0) then precise knowledge of one precludes such knowledge of
the other

the authors thus conclude that

1. the quantum-mechanical description of reality given by the wave
function is not complete, or

2. when the operators corresponding to two physical quantities do not
commute the two quantities cannot have simultaneous reality
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T
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if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
I+11 at any subsequent time, specifically t > T and we call it ¥
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Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
I+11 at any subsequent time, specifically t > T and we call it ¥

suppose that a physical quantity A

has eigenvalues and eigenfunctions
ai,a2,das,...
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
I+11 at any subsequent time, specifically t > T and we call it ¥

suppose that a physical quantity A

has eigenvalues and eigenfunctions
ai,a2,das,...

U1(X1), U2(X1), U3(X1), e
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
I+11 at any subsequent time, specifically t > T and we call it ¥

suppose that a physical quantity A

has eigenvalues and eigenfunctions
a1, a2,das,...

then the system-wide wavefunction ui(x1), ua(x1), us(xt)), . .

as a function of xj is
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
[+1l at any subsequent time, specifically t > T and we call it W

suppose that a physical quantity A

has eigenvalues and eigenfunctions
a1, a2,das,...

then the system-wide wavefunction U1(X1) w(x1), us(x1), - .-

as a function of xj is

V(x1, x2) g Yn(x2)un(x1)
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
[+1l at any subsequent time, specifically t > T and we call it W

suppose that a physical quantity A

has eigenvalues and eigenfunctions
a1, a2,das,...

then the system-wide wavefunction U1(X1) w(x1), us(x1), - .-

as a function of xj is

where 1,(x2) are the “coefficients” W(xi, x2) Z%» x2)Un(x1)
of the expansion in up(x1)
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
[+1l at any subsequent time, specifically t > T and we call it W

suppose that a physical quantity A

has eigenvalues and eigenfunctions
a1, a2,das,...

then the system-wide wavefunction U1(X1) w(x1), us(x1), - .-

as a function of xj is
where 1,(x2) are the “coefficients” W(xi, x2) Z%» x2)Un(x1)
of the expansion in up(x1)

if Ais now measured and is found to have value a, then the first system
must be left in state uk(x;) and the second system must be, therefore
found in state ¥k (x2)
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, | and Il which interact over a time
period 0 <t < T

if we know the state of each system before t = 0, then by using the
Schrodinger equation, we can calculate the state of the combined system
[+1l at any subsequent time, specifically t > T and we call it W

suppose that a physical quantity A

has eigenvalues and eigenfunctions
a1, a2,das,...

then the system-wide wavefunction U1(X1) w(x1), us(x1), - .-

as a function of xj is
where 1,(x2) are the “coefficients” W(xi, x2) Z%» x2)Un(x1)
of the expansion in up(x1)

if Ais now measured and is found to have value a, then the first system
must be left in state uk(x;) and the second system must be, therefore
found in state 1, (x2) so that the combined state is W = 1y (x2) uk(x1)
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Einstein Podolsky Rosen paradox

If instead of operator A, we choose
to expand the overall wavefunction
in terms of the eigenfunctions of B,
then we have
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in terms of the eigenfunctions of B, oo
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If instead of operator A, we choose b1, b, b3, ...
to expand the overall wavefunction
in terms of the eigenfunctions of B, oo
then we have V(xi,x) = Z‘Ps()Q)Vs(Xl)

s=1

vi(x1), va(x1), va(x1), . ..

if B is measured and found to be b,, then the combined system can be
said to be in the state ¥ = ¢,(x2)v,(x1) and the second system must be
in state ¢,(x2)
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in terms of the eigenfunctions of B, oo
then we have V(xi,x) = Z‘Ps()Q)Vs(Xl)

s=1

vi(x1), va(x1), va(x1), . ..

if B is measured and found to be b,, then the combined system can be
said to be in the state ¥ = ¢,(x2)v,(x1) and the second system must be
in state ¢,(x2)

Thus, as a consequence of two different measurements made on System |,
System |l can be left in states with two different wave functions, even
when it is far away from, and not interacting with System |
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Einstein Podolsky Rosen paradox

If instead of operator A, we choose b1, b, b3, ...
to expand the overall wavefunction vi(x1), va(x1), v3(x1), - ..
in terms of the eigenfunctions of B, oo
then we have V(x1, x2) = Z‘,Os()Q)Vs(Xl)
s=1

if B is measured and found to be b,, then the combined system can be
said to be in the state ¥ = ¢,(x2)v,(x1) and the second system must be
in state ¢,(x2)

Thus, as a consequence of two different measurements made on System |,
System |l can be left in states with two different wave functions, even
when it is far away from, and not interacting with System |

Thus one can assign two different wave functions, 1x(x2) and ¢,(x2), to
the same reality (System Il after interaction with System I)
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Einstein Podolsky Rosen paradox

Suppose that ¥x(x2) and ¢,(x2) are eigenfunctions of two non-commuting
operators, P and @ with eigenvalues p, and g,
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Einstein Podolsky Rosen paradox

Suppose that ¥x(x2) and ¢,(x2) are eigenfunctions of two non-commuting
operators, P and @ with eigenvalues p, and g,

By measuring either A or B on System |, we are able to predict with

certainty, and without disturbing System I, either the value of P (py) or
Q (qr)
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Suppose that ¥x(x2) and ¢,(x2) are eigenfunctions of two non-commuting
operators, P and @ with eigenvalues p, and g,

By measuring either A or B on System |, we are able to predict with
certainty, and without disturbing System I, either the value of P (py) or
Q (gr) According to our criterion for reality, in the first case, P must be
an element of reality and in the second case, @ must be an element of
reality but ¥x(x2) and ¢,(x2) were shown to be part of the same reality
and this leads to a contradiction of the postulate that “when the operators
corresponding to two physical quantities do not commute the two
quantities cannot have simultaneous reality”
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an element of reality and in the second case, @ must be an element of
reality but ¥x(x2) and ¢,(x2) were shown to be part of the same reality
and this leads to a contradiction of the postulate that “when the operators
corresponding to two physical quantities do not commute the two
quantities cannot have simultaneous reality”

Thus, the authors conclude that “the quantum-mechanical description of
reality given by the wave function is not complete”
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Einstein Podolsky Rosen paradox

Suppose that ¥x(x2) and ¢,(x2) are eigenfunctions of two non-commuting
operators, P and @ with eigenvalues p, and g,

By measuring either A or B on System |, we are able to predict with
certainty, and without disturbing System I, either the value of P (py) or
Q (gr) According to our criterion for reality, in the first case, P must be
an element of reality and in the second case, @ must be an element of
reality but ¥x(x2) and ¢,(x2) were shown to be part of the same reality
and this leads to a contradiction of the postulate that “when the operators
corresponding to two physical quantities do not commute the two
quantities cannot have simultaneous reality”

Thus, the authors conclude that “the quantum-mechanical description of
reality given by the wave function is not complete”

If this “realist” version of quantum mechanics is correct, the “complete”
description of reality must include some local hidden variable(s) which
specify the state of the system completely
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