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Aharonov-Bohm effect

QJf jonrnal of experimental and theoretical physics established by E. L ¹chols i» l899
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Significance of Electromagnetic Potentials in the Quantum Theory

Y. AHARONOV AND D. BOHIN

H. II. Wills Physics Laboratory,

University

of Bristol, Bristol, England

(Received May 28, 1959; revised manuscript received June 16, 1959)

In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum
domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of poten-
tials on charged particles, even in the region where all the fields (and therefore the forces on the particles)
vanish. Ke shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest
further possible developments in the interpretation of the potentials.

1. INTRODUCTION

N classical electrodynamics, the vector and scalar
&- potentials were first introduced as a convenient
mathematical aid for calculating the fields. It is true
that in order to obtain a classical canonical formalism,
the potentials are needed. Nevertheless, the funda-
mental equations of motion can always be expressed
directly in terms of the fields alone.

In the quantum mechanics, however, the canonical
formalism is necessary, and as a result, the potentials
cannot be eliminated from the basic equations. Never-
theless, these equations, as well as the physical quan-
tities, are all gauge invariant; so that it may seem that
even in quantum mechanics, the potentials themselves
have no independent significance.

In this paper, we shall show that the above conclu-
sions are not correct and that a further interpretation
of the potentials is needed in the quantum mechanics.

2. POSSIBLE EXPERIMENTS DEMONSTRATING
THE ROLE OF POTENTIALS IN THE

QUANTUM THEORY

In this section, we shall discuss several possible ex-
periments which demonstrate the significance of poten-
tials in the quantum theory. We shall begin with a
simple example.

Suppose we have a charged particle inside a "Faraday
cage" connected to an external generator which causes
the potential on the cage to alternate in time. This will
add to the Hamiltonian of the particle a term V(x,t)
which is, for the region inside the cage, a function of
time only. In the nonrelativistic limit (and we shall

assume this almost everywhere in the following dis-
cussions) we have, for the region inside the cage,
H=Hp+V(t) where Hp is the Hamiltonian when the
generator is not functioning, and V(t) =ep(t). If
leap(s, t) is a solution of the Hamiltonian Hp, then the
solution for H will be

&=/pe '«&, S= —
V(t)dt,

which follows from

8$ ( Bfp 85)
i jt =

I
i jt —+pp—1

e 'sty= 1tH p+ V (t)]Q= HQ.
a~ E a~ at &

The new solution differs from the old one just by a
phase factor and this corresponds, of course, to no
change in any physical result.

Now consider a more complex experiment in which a
single coherent electron beam is split into two parts and
each part is then allowed to enter a long cylindrical
metal tube, as shown in Fig. 1.

After the beams pass through the tubes, they are
combined to interfere coherently at F. By means of
time-determining electrical "shutters" the beam is
chopped into wave packets that are long compared
with the wavelength ), but short compared with the
length of the tubes. The potential in each tube is deter-
mined by a time delay mechanism in such a way that
the potential is zero in region I (until each packet is
well inside its tube). The potential then grows as a
function of time, but differently in each tube. Finally,
it falls back to zero, before the electron comes near the
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Fn. 1. Schematic experiment to demonstrate interference with
time-dependent scalar potential. A, 8, C, D, E: suitable devices
to separate and divert beams. 5'I, W2. wave packets. Mi, M'g.'

cylindrical metal tubes. F: interference region.

other edge of the tube. Thus the potential is nonzero
only while the electrons are well inside the tube (region
II). When the electron is in region III, there is again no
potential. The purpose of this arrangement is to ensure
that the electron is in a time-varying potential without
ever being in a fmld (because the 6eid does not penetrate
far from the edges of the tubes, and is nonzero only at
times when the electron is far from these edges).

Now let P(x, t) =iti'(x, t)+Ps'(x, t) be the wave func-
tion when the potential is absent (Pi' and its' repre-
senting the parts that pass through tubes 1 and 2,
respectively). But since U is a function only of t
wherever it is appreciable, the problem for each tube
is essentially the same as that of the Faraday cage. The
solution is then

f—$ oe isi///+p oe —/ss/s—

Fzt".. 2. Schematic experiment to demonstrate interference
with time-independent vector potential.

suggests that the associated phase shift of the electron
wave function ought to be

e
AS//'t= —— A dx,

CS

where gA dx= J'H ds=p (the total magnetic flux
inside the circuit).

This corresponds to another experimental situation.
By means of a current Qowing through a very closely
wound cylindrical solenoid of radius E., center at the
origin and axis in the s direction, we create a magnetic
field, H, which is essentially confined within the sole-
noid. However, the vector potential, A, evidently,
cannot be zero everywhere outside the solenoid, because
the total Qux through every circuit containing the
origin is equal to a constant

where

Sy=e ~ pydt, 52=8 yqdt.
yp —— H ds=)IA dx.

It is evident that the interference of the two parts at
E will depend on the phase difference (Si—Ss)/It. Thus,
there is a physical eGect of the potentials even though
no force is ever actually exerted on the electron. The
eGect is evidently essentially quantum-mechanical in
nature because it comes in the phenomenon of inter-
ference. We are therefore not surprised that it does not
appear in classical mechanics.

From relativistic considerations, it is easily seen that
the covariance of the above conclusion demands that
there should be similar results involving the vector
potential, A.

The phase difference, (Si—Ss)/5, can also be ex-
pressed as the integral (e/It)gpdt around a closed
circuit in space-time, where q is evaluated at the place
of the center of the wave packet. The relativistic gener-
alization of the above integral is

e ] A
rpdt dx- —

/s E c i '

where the path of integration now goes over any closed
circuit in space-time.

As another special case, let us now consider a path
in space only (t=constant). The above argument

To demonstrate the eGects of the total Qux, we begin,
as before, with a coherent beam of electrons. (But now
there is no need to make wave packets. ) The beam is
split into two parts, each going on opposite sides of the
solenoid, but avoiding it. (The solenoid can be shielded
from the electron beam by a thin plate which casts a
shadow. ) As in the former example, the beams are
brought together at J (Fig. 2).

The Hamiltonian for this case is

$P—(e/c) Aj'

In singly connected regions, where H= V&(A=O, we
can always obtain a solution for the above Hamiltonian
by taking it =itse 'e/", where ps is the solution when
A=O and where V'S/5= (e/c)A. But, in the experiment
discussed above, in which we have a multiply connected
region (the region outside the solenoid), fee 'e/" is a
non-single-valued function' and therefore, in general,
not a permissible solution of Schrodinger's equation.
Nevertheless, in our problem it is still possible to use
such solutions because the wave function splits into
two parts P =Pi+fs, where Pi represents the beam on

' Vniess go ——eigc/e, where e is an integer.

“Significance of electromagnetic potentials in quantum theory,” Y. Aharonov and D. Bohm, Phys. Rev. 115, 485-491 (1959).
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Aharonov-Bohm theory

Consider the more general case where a particle moves through a region
where ~B = ∇× ~A = 0 but ~A 6= 0

for a static potential, ~A,
the Schrödinger equation be-
comes

this can be simplified by sub-
stituting

Ψ = e igΨ′

i~
∂Ψ

∂t
=

[
1

2m

(
~
i
∇− q~A

)2

+ V

]
Ψ

g(~r) ≡ q

~

∫ ~r

O
~A(~r ′) · d~r ′ → ∇g = (q/~)~A

∇Ψ = e ig (i∇g)Ψ′ + e ig (∇Ψ′)(
~
i
∇− q~A

)
Ψ =

~
i
e ig (i∇g)Ψ′ +

~
i
e ig (∇Ψ′)− q~Ae igΨ′

= ����
q~Ae igΨ′ +

~
i
e ig (∇Ψ′)−����

q~Ae igΨ′(
~
i
∇− q~A

)2

Ψ = −~2e ig∇2Ψ′
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Aharonov-Bohm theory

Substituting into the Schrö-
dinger equation

Ψ′ satisfies the Schrödinger
equation without ~A

i~e ig
∂Ψ′

∂t
= − 1

2m
~2e ig∇2Ψ′ + Ve igΨ′

i~
∂Ψ′

∂t
= − ~2

2m
∇2Ψ′ + VΨ′

thus the solution of a system where there
is a vector potential is trivial, just add on
a phase factor e ig

Aharonov & Bohm proposed an experi-
ment where an electron beam is split in
two and passed on either side of a long
solenoid before being recombined

the two beams should arrive with different
phases g± = ±(qΦ/2~)

I

B

A

Beam
split

Beam
recombined

solenoid

This is a so-called non-holonomic process which involves Berry’s Phase
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dinger equation

Ψ′ satisfies the Schrödinger
equation without ~A

i~e ig
∂Ψ′

∂t
= − 1

2m
~2e ig∇2Ψ′ + Ve igΨ′

i~
∂Ψ′

∂t
= − ~2

2m
∇2Ψ′ + VΨ′

thus the solution of a system where there
is a vector potential is trivial, just add on
a phase factor e ig

Aharonov & Bohm proposed an experi-
ment where an electron beam is split in
two and passed on either side of a long
solenoid before being recombined

the two beams should arrive with different
phases g± = ±(qΦ/2~)

I

B

A

Beam
split

Beam
recombined

solenoid

This is a so-called non-holonomic process which involves Berry’s Phase

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 4 / 28



Aharonov-Bohm experiment
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SHIFT OF AN ELECTRON INTERFERENCE PATTERN BY ENCLOSED MAGNETIC FLUX

R. G. Chambers
H. H. Wills Physics Laboratory, University of Bristol, Bristol, England

(Received May 27, 1960)

Aharonov and Bohm' have recently drawn
attention to a remarkable prediction from quan-
tum theory. According to this, the fringe pattern
in an electron interference experiment should
be shifted by altering the amount of magnetic
flux passing between the two beams (e.g. , in

region a of Fig. 1), even though the beams
themselves pass only through field-free regions.
Theory predicts a shift of n fringes for an en-
closed flux 4 of nkc/e; it is convenient to refer
to a natural "flux unit, "hc/e =4.135X10 ' gauss
cm'. It has since been pointed out that the same
conclusion had previously been reached by
Ehrenberg and Siday, ' using semiclassical argu-
ments, but these authors perhaps did not suf-
ficiently stress the remarkable nature of the
result, and their work appears to have attracted
little attention.

Clearly the first problem to consider, experi-
mentally, is the effect on the fringe system of
stray fields not localized to region a but extend-
ing, e.g. , over region a in Fig. 1. In addition

FIG. 1. Schematic diagram of interferometer, with
source s, observing plane o, biprism 8, f, and con-
fined and extended field regions a and a'.

to the "quantum" fringe shift due to the enclosed
flux, there will then be a shift due simply to
curvature of the electron trajectories by the
field. A straightforward calculation shows that
in a "biprism" experiment, such a field should
produce a fringe displacement which exactly
keeps pace with the deflection of the beams by
the field, so that the fringe system appears to
remain undisplaced relative to the envelope of
the pattern. A field of type a, on the other hand,
should leave the envelope undisplaced, and pro-
duce a fringe shift within it. In the Marton'
interferometer, conditions are different, and a
field of type a' should leave the fringes undis-
placed in space. This explains how Marton et al. '
were able to observe fringes in the presence of
stray 60-cps fields probably large enough to
have destroyed them otherwise; this experiment
thus constitutes an inadvertent check of the
existence of the "quantum" shift. '

To obtain a more direct check, a Philips
EM100 electron microscope' has been modified
so that it can be switched at will from normal
operation to operation as an interferometer.
Fringes are produced by an electrostatic "biprism"
consisting of an aluminized quartz fiber f (Fig. 1)
flanked by two earthed metal plates e; altering
the positive potential applied to f alters the
effective angle of the biprism. The distances
s-f and f-o (Fig. 1) are about 6.7 cm and 13.4
cm, respectively. With this microscope it was
not possible to reduce the virtual source diameter
below about 0.2 p. , so that it was necessary to
use a fiber f only about 1.5 p, in diameter and a
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FIG. 2. (a) Fringe pattern due to biprisrn alone.
(b) Pattern displaced by 2. 5 fringe widths by field of
type a'.

very small biprism angle, to produce a wide
pattern of fringes which would not be blurred
out by the finite source size. The fringe yattern
obtained is shown in Fig. 2(a); the fringe width

in the observing plane o is about 0.6 p, .
We first examined the effect of a field of type

a', produced by a Helmholtz pair of single turns
3 mm in diameter just behind the biprism. Fields
up to 0.3 gauss were applied, sufficient to dis-
place the pattern by uy to 30 fringe widths, and
as predicted the appearance of the pattern was
completely unchanged. Figure 2(b), for instance,
shows the pattern in a field producing a dis-
placement of about 2.5 fringe widths. In the
absence of the "quantum" shift due to the en-
closed flux, this pattern would have had the
light and dark fringes interchanged. We also
verified that with this interferometer, unlike
Marton's, a small ac field suffices to blur out
the fringe system completely. These results
confirm the presence of the quantum shift in
fields of type a'.

Of more interest is the effect predicted for a
field of type a, where intuition might expect no
effect. Such a field was yroduced by an iron
whisker, ' about 1 p. in diameter and 0.5 mm long,
placed in the shadow of the fiber f. Whiskers
as thin as this are expected theoretically and
found experimentally to be single magnetic
domains; moreover they are found to taper' with
a slope of the order of 10 ', which is extremely
convenient for the yresent purpose. An iron
whisker 1 p, in diameter will contain about 400
flux units; if it tapers uniformly with a slope of
10 ', the flux content will change along the
length at a rate d4/ds of about 1 flux unit per

(a) (b)

FIG. 3. (a) Tilted fringes produced by tapering
whisker in shadow of biprism fiber. (b) Fresnel
fringes in the shadow of the whisker itself, just out-
side shadow of fiber. (o) Same as (b), but from a dif-
ferent part of the whisker, and with fiber out of the
field of view.

micron. Thus if such a whisker is placed in
position a (Fig. 1), we expect to see a pattern
in which the envelope is undisplaced, but the
fringe system within the envelope is inclined at
an angle of the order of one fringe width per
micron. Since the fringe width in the observing
plane is 0.6 p, , and there is a "pin-hole" magnifi-
cation of x3 between the biprism-fiber assembly
and the observing plane, we thus expect the
fringes to show a tilt of order 1 in 5 relative to
the envelope of the pattern. Precisely this is
observed experimentally, as shown in Fig. 3(a).
It will be seen that the whisker taper is not uni-
form, but in this example becomes very small
in the upper part of the picture.

In fact the biprism is an unnecessary refine-
ment for this exyeriment: Fresnel diffraction
into the shadow of the whisker is strong enough
to produce a clear fringe pattern from the whisker
alone. Thus Fig. 3(b) shows the same section of
whisker as Fig. 3(a), moved just out of the shadow
of the biprism fiber. The biprism fringes are
now unperturbed; the Fresnel fringes in the
shadow of the whisker show exactly the same
pattern of fringe shifts along their length as in

Fig. 3(a). Figure 3(c) shows a further example
of these fringes, from a different part of the
same whisker, with the biprism moved out of
the way. The whisker here is tapering more
rapidly.

These fringe shifts cannot be attributed to direct
interaction between the electrons and the surface
of the whisker, since in Fig. 3(a) the whisker

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

s: electron source
o: observing plane
e, f : biprism
a: confined field region
a′: extended field region

what about the effect of stray fields
in region a′ which can curve the
electron beams electrostatically?

in the biprism, the quantum ef-
fect exactly cancels the stray field
leaving the interference pattern un-
changed

a field solely in region a will lead
to a quantum effect with the inter-
ference fringes moving through the
envelope

modified electron microscope, biprism consists of an aluminized quartz
fiber (f) and two grounded metal plates (e), Aharonov-Bohm effect will
produce a shift of n fringes for Φ = nhc/e

“Shift of an electron interference pattern by enclosed magnetic flux,”R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) is with no additional field ap-
plied in extended region

(b) has 25mG, which alone would
invert the fringe, applied with no
visible fringe shift

up to 300 mG applied in region a′

showed no shift

This calibration experiment shows that the Aharonov-Bhom effect is
present and balances the electrostatic fringe shifts in a region where there
is both a flux AND a field

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Aharonov-Bohm experiment

(a) a tapered iron whisker produces
a confined field and flux with a gra-
dient along the z-axis manifested in
tilted fringes

(b) direct imaging, with the whisker
outside the shadow of the biprism
fiber, due to Fresnel diffraction
in the shadow of the fiber shows
biprism fringes with tilted fringes
just to the side

(c) higher taper, again using Fresnel diffraction in fiber shadow but with
biprism removed shows more highly tilted fringes

Chambers says: “I am indebted for Mr. Aharonov and Dr. Bohm for
telling me of their work before publication..”

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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Chambers says: “I am indebted for Mr. Aharonov and Dr. Bohm for
telling me of their work before publication..”

“Shift of an electron interference pattern by enclosed magnetic flux,” R.G. Chambers, Phys. Rev. Lett. 5, 3-5 (1960).
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A-B effect in a normal metal
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Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings

R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz
IBM Thomas J. 8'atson Research Center, Yorkto~n Heights, Xew Fork 20598

(Received 27 March 1985)

Magnetoresistance oscillations periodic with respect to the flux h/e have been observed in
submicron-diameter Au rings, along with weaker h/2e oscillations. The h/e oscillations persist to
very large magnetic fields. The background structure in the magnetoresistance was not symmetric
about zero field. The temperature dependence of both the amplitude of the oscillations and the
background are consistent with the recent theory by Stone.

PACS numbers: 72.15.Gd, 72.90.+y, 73.60.Dt

Electron wave packets circling a magnetic flux
should exhibit the phase shift introduced by the mag-
netic vector potential A. ' In a metallic ring, small
enough so that the electron states are not randomized
by inelastic (or magnetic) scattering during the traver-
sal of the arm of the ring, an interference pattern
should be present in the magnetoresistance of the de-
vice. Electrons traveling along one arm will acquire a
phase change 5t, and electrons in the other arm will, in
general, suffer a different phase change 52. Changing
the magnetic flux encircled by the ring will tune the
phase change along one arm of the ring by a well-
defined amount Ba= (e/t) JA 11 and by —5& along
the other arm. The phase tuning should appear as cy-
cles of destructive and constructive interference of the
wave packets, the period of the cycle being 40= h/e.
This interference should be reflected in the transport
properties of the ring as described by Landauer's for-
mula. 2 4 In this Letter, we describe the first experi-
mental observation of the oscillations periodic with
respect to 40 in the magnetoresistance of a normal-
metal ring.

Interference effects involving the flux h/e have
been previously observed in a two-slit interference ex-
periment involving coherent beams of electrons. 5

Magnetoresistance oscillations in single-crystal whisk-
ers of bismuth periodic in h/e have been reported at
low fields for the case where the extremum of the Fer-
mi surface is cut off by the sample diameter. 6 Resis-
tance oscillations of period h/2e (flux quantization)
have been seen in superconducting cylinders. 7 Four
years ago, magnetoresistance oscillations of period
—,4o were predicted on the basis of weak localization
in multiply connected devices. s This is the same flux
period as observed in superconductors, because of the
similarity between the superconductor pairing and the
"self-interference" described by the theory of weak lo-
calization. 9 Since the first experiment by Sharvin and
Sharvin, to there have been several observations of the
superconducting flux period —,

' 4o in normal-metal
cylinders and networks of loops. " To date, there have
been no observations of the one-electron flux period
40, and its existence is controversial. Several recent
theoretical papers have argued that the h/e period will

be present in strictly one-dimensional rings, and even
in rings composed of wires with finite width. 4 Others
have claimed that only h/2e oscillations will be ob-
served regardless of device size and topology. '

Theoretical work which relies upon ensemble-
averaging techniques has uniformly predicted h/2e os-
'cillationss'2; calculations of the conductance exclusive
of the averaging have predicted hje oscillations as
well. 2 4 The difference between a single ring and a
network of rings or a long cylinder is, therefore, cru-
cial. The network of many rings and the long cylinder
extend much farther than the distance [L& = (Dr~) '
where D is the diffusion constant and r& is the time
between phase-breaking co11isions] that the electron
travels before randomly changing its phase. For this
reason, it is believed that samples much longer than

L& physically incorporate the ensemble averaging.
Each section (longer than L@) of a macroscopic sam-
ple is quantum-mechanically independent because the
electron states are randomized between the sections.
The single mesoscopic ring (diameter ( L&) does not
average in this way because the entire sample is
quantum-mechanically coherent. 4'3

There exists a further complication in normal met-
als; the magnetic flux penetrates the wires composing
the device. Stone'4 has shown that the flux in the wire
leads to an aperiodic fluctuation in the magnetoresis-
tance. This fluctuation was the main complication in

interpreting the earlier experiments'5 where the diam-
eter of the ring was not much larger than the widths of
the wires. On the basis of the analysis, a prediction
was made that, in a ring having an area much larger
than the area covered by the wires, the oscillations
would be clearly observed, since the period would then
be much smaller than the field scale of the fluctua-
tions.

With this in mind, we constructed several devices
each containing a single loop or a lone wire. The sam-
ples were drawn with a scanning transmission electron
microscope (STEM) on a polycrystalline gold film 38
nm thick having a resistivity p ——5 p, A cm at T= 4 K.
The fabrication process has been described previous-
ly. ' A photograph of the larger ring is shown in Fig.
1. Here we will describe the results from two of the
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FIG. 2. (a) Magnetoresistance data from the ring in Fig. I
at several temperatures. (b) The Fourier transform of the
data in (a). The data at 0.199 and 0.698 K have been offset
for clarity of display. The markers at the top of the figure
indicate the bounds for the flux periods h/e and h/2e based
on the measured inside and outside diameters of the loop.
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FIG. 1. (a) Magnetoresistance of the ring measured at
T=0.01 K. (b) Fourier power spectrum in arbitrary units
containing peaks at h/e and h/2e. The inset is a photograph
of the larger ring. The inside diameter of the loop is 784
nm, and the width of the wires is 41 nm.

rings (average diameters 825 and 245 nm) and a lone
wire (length 300 nm). The samples were cooled in the
mixing chamber of a dilution refrigerator, and the
resistance was measured with a four-probe bridge
operated at 205 Hz and 200 nA (rms).

Typical magnetoresistance data from the larger-
diameter ring are displayed in Fig. 1(a). Periodic oscil-
lations are clearly visible superimposed on a more
slowly varying background. The period of the high-
frequency oscillations is AH = 0.007 59 T. This period
corresponds to the addition of the flux 4p = h/e to the
area of the hole. From the average area (one half of
the sum of the area from the inside diameter and that
from the outside diameter) measured with the STEM,
4p = 0.007 80 T. The area measurement is accurate to
within = 10'/o. As a result of the large aspect ratio, we
can say unequivocally that the periodic oscillations are
not consistent with h/2e. They are certainly the
single-electron process predicted recently. 2 4 In the
Fourier power spectrum [Fig. 1(b)] of these data, two
peaks are visible at I/AH=131 and 260 T ' corre-
sponding respectively to h/e and h/2e. (Since the h/e
oscillations are not strictly sinusoidal, we cannot be
certain whether the h/2e peak is the self-interference
process or harmonic content in the 4&p oscillations. )
That the h/2e period is less significant than the h/e
period is consistent with the theory for rings which are
moderately resistive. We note that the amplitude of
the h/e oscillations at the lowest temperatures is about
0.1% of the resistance at H= 0, at least a factor of 10

larger than the oscillations observed in normal-metal
cylinders and networks of loops. s'p "

Figure 2(a) contains resistance data for three tem-
peratures over a larger range of magnetic field.
Surprisingly, the oscillations persist to rather higher
magnetic field [H ) 8 T (our largest available field) or
over 1000 periods] than expected from estimates
which assumed that the phase difference between the
inside edge of the ring and the outside edge should
completely destroy the periodic effects. The argument
that the flux in the metal should destroy the oscilla-
tions relies on the simple assumption that the wire
consists of parallel but noninteracting conduction
paths. If instead the electron path in the wire is suffi-
ciently erratic to "cover" the whole area of the wire,
then no phase difference exists between the inside di-
ameter and the outside diameter. '

Figure 2(b) contains the Fourier spectra of the data
in Fig. 2(a). Again, the fundamental h/e period ap-
pears as the large peak at I/b, H=131 T ', and near
I/AH=260 T ' there is a small feature in the spec-
trum. There is also a peak near 5 T ' which is the
average field scale of the aperiodic fluctuations. '4 The
detailed structure of the h/e peak in the power spec-
trum is probably the results of mixing of the field
scales corresponding to the area of the hole in the ring
and the area of the arms of the ring. ts (The simple
difference between inside and outside area implies a
splitting of more than 20 T ', whereas the observed
splitting in the peak structure has never been more
than 7 T '.) A simple extension of the multichannel
Landauer formula for a ring with flux piercing the
arms implies that the Arharonov-Bohm oscillations
will be modulated by an aperiodic function. ' Roughly
speaking, the field scale in which the aperiodic func-
tion fluctuates is that for the addition of another flux
quantum to the arms of the ring. The field scale of the
modulating function mixes with the Aharonov-Bohm
period to give structure to the peak. As seen in Fig.
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A-B effect in a normal metal

There is no reason why the
Aharonov-Bohm effect could
not be observed in a conducting
loop

The key would be to have the
electrons traveling on either side
of the “solenoid” maintain co-
herence until they reunite

Make a small loop out of gold,
cool to very low temperatures to
increase the mean free path of
the electrons, and vary the field
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The quantum-mechanical phase of the wavefunction of an
electron can be changed by electromagnetic potentials, as was
predicted by Aharonov and Bohm1 in 1959. Experiments on
propagating electron waves in vacuum have revealed both the
magnetic2–4 and electrostatic5 Aharonov–Bohm effect. Surpris-
ingly, the magnetic effect was also observed in micrometre-sized
metal rings6–8, demonstrating that electrons keep their phase
coherence in such samples despite their diffusive motion. The
search for the electrostatic contribution to the electron phase in

these metal rings9,10 was hindered by the high conductivity of
metal, which makes it difficult to apply a well defined voltage
difference across the ring. Here we report measurements of
quantum interference of electrons in metal rings that are inter-
rupted by two small tunnel junctions. In these systems, a well
defined voltage difference between the two parts of the ring can
be applied. Using these rings we simultaneously explore the
influence of magnetic and electrostatic potentials on the
Aharonov–Bohm quantum-interference effect, and we demon-
strate that these two potentials play interchangeable roles.

To determine the combined influence of electrostatic and mag-
netic potentials on the quantum interference of electron waves, we
consider the model shown in Fig. 1a and b. A metallic ring is
interrupted by two tunnel barriers denoted by the black regions in
Fig. 1b. Because the resistance of these tunnel barriers is much larger
than the resistance of the metallic part, a well defined potential V
can be applied across the two halves of the ring. Electric transport
occurs because electrons can tunnel from an occupied state in the
left half to an empty state in the right half, as shown in Fig. 1a. This
process is equivalent to the creation of an electron–hole pair during
a tunnel event. After tunnelling, the electron and the hole start to
diffuse in the right and left halves of the ring, respectively. Because
the transport is diffusive, the electron and hole have a finite
probability of recombining at the other tunnel barrier as shown
in Fig. 1b. Only those trajectories in which the electron and hole
trajectories form a closed loop circling the ring are sensitive to the
magnetic field through the ring. At the moment of recombination,
the phase difference DfB between the electron and hole due to the
magnetic field B is 2peBS/h (where e is the electron charge, h is
Planck’s constant, and S is the area of the ring). This results in
alternating constructive and destructive interference between the
electron and hole wave as a function of B, with a period h/(eS). This
effect has analogies with the modulation of the Cooper pair current
with period h/(2eS) in a superconducting ring interrupted by tunnel
junctions (a superconducting quantum interference device,
SQUID)11,12. But in the case of the SQUID the effect results from
collective Cooper pair tunnelling (the Josephson effect), whereas
here the interference takes place at the single electron level. Because
of the voltage difference, the electron and hole have different
energies with respect to the Fermi level in both halves of our
device. The sum of the energy of the hole eh and the electron ee
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Figure 1 Quantum interference of electron–hole pair in mesoscopic ring. a,

Energy diagram modelling a tunnelling process. At the moment of tunnelling, an

electron (e)with energy ee is injected into the right part of the sample leavingahole

(h) with energy eh in the left part. b, Typical electron–hole trajectories which are

sensitive to an Aharonov–Bohm flux. At the moment of a tunnel event an

electron–hole pair is created. The hole and the electron diffuse separately to the

other tunnel barrier where they recombine and interfere. The interference of the

electron and hole wave is both sensitive to a magnetic field B piercing the ring

(magnetic Aharonov–Bohm effect) and a voltage V across the ring (electrostatic

Aharonov–Bohm effect). c, Scanning electron microscope image of the

Aharonov–Bohm ring which is interrupted by two small tunnel junctions. The

sample consists of a 0:9 mm 3 0:9 mm square loop. The width of the arms of the

loop is 60nm. The loop is interrupted by two small tunnel junctions of 60 3 60nm2.

The average distance L between the tunnel barriers is 1.6 mm. The mask of the

loop was defined by electron beam lithography. The junctions were fabricated in

three strips. First, a 25-nm-thick aluminium layer was deposited at an angle with

respect to the oxidized Si substrate. Second, the aluminium was oxidized to form

the insulating tunnel barriers. Finally, a second 40-nm-thick aluminium layer was

deposited at another angle. The tunnel junctions are denoted by the arrows. By

determining the overlap area of the different junctions, we conclude that the

tunnelling conductances do not differ by more than 10%. This is confirmed by

critical current measurements in the superconducting state, in which the sample

operates as a SQUID. The tunnel conductance GT of each junction is 55 6 5 mS,

which is about four orders of magnitude smaller than the conductance of the

metallic part of the ring.

Figure 2 Conductance G versus magnetic field B at T ¼ 20mK and V ¼ 500 mV.

Aharonov–Bohm oscillations with a period BAB ¼ 5mT areobserved as a function

of B. This period is in agreementwith the magnetic field of 5.3mTwhich is needed

to add a flux quantum h/e to the average area S ¼ 0:75 mm2 enclosed by the ring.

In the inset, the Fourier power spectrum is shown as a function of the magnetic

andelectric ‘frequencies’ nB and nV. The lighter the grey scale the larger the Fourier

power. The magnetic and electric field modulation of GAB manifests itself as

peaks around 60.2mT−1 and 60.1 mV−1, respectively.
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equals eV (Fig. 1a). Owing to this energy difference, the electron–
hole pair accumulates an electrostatic phase difference
DfV ¼ 2peVt=h, where t is the time the electron and hole spend
in their respective parts of the ring before they recombine. Because
electron motion is diffusive there is not one unique time, but rather
a distribution of times with an average value t0 ¼ L2=D where L is
the distance along the ring between the two tunnel barriers and D is
the diffusion coefficient. The electrostatic interference results in an
alternating constructive and destructive interference as a function of
V with a period h/(et0). Experimentally, one can explore both the
magnetic and electrostatic quantum interference effect by measur-
ing the Aharonov–Bohm flux-dependent part GAB of the conduc-
tance. The magnetic field B and the bias voltage V have an equivalent
effect on GAB. Changing the magnetic field at fixed V leads to a
periodically oscillating GAB with a period which is solely defined by
the geometry of the ring. Measuring the conductance as a function
of Vat fixed B results in a periodically oscillating GAB with an average
period which is determined by t0. In other words, by exploring the
voltage dependence of GAB, t0 is measured experimentally. In the
ballistic regime related interference experiments13 have been per-
formed in which one of the arms of the Aharonov–Bohm ring was
interrupted by a quantum dot. But the relevant interference pro-
cesses in such systems, where the number of electrons in the dot is
changing, differ significantly from the interference in the ring we
consider here.

To investigate the combined role of magnetic and electrostatic
potentials we designed the sample shown in Fig. 1c. The differential
conductance G at a voltage V and magnetic field B was measured
using a lock-in technique. Details of the measurement set-up are
given in ref. 14. All measurements were performed at B . 1 T to
drive the aluminium loop into the normal state. At those fields time-
reversal symmetry is broken, and effects related to this symmetry
can be neglected. In Fig. 2 the conductance G is plotted as a function
of B at a bias voltage V ¼ 500 mV and a temperature T ¼ 20 mK.
Clear periodic oscillations of the conductance are observed with a
period of 5 mT, which is in good agreement with the predicted
period for h/e oscillations. The relative amplitude of the Aharonov–
Bohm oscillations at V ¼ 500 mV is ,5%, which is considerably
larger than the results obtained for uniform rings6–10. The magnetic
field not only pierces the hole of the loop, but also penetrates the

arms of the loop in contrast to the ideal geometry proposed by
Aharonov and Bohm1. This gives rise to aperiodic conductance
fluctuations14, clearly visible in Fig. 2 as the slowly varying back-
ground on top of the Aharonov–Bohm oscillations. Because of the
large difference in magnetic field scales, it is possible to filter out the
aperiodic conductance fluctuations using Fourier analysis. In this
way we can extract (from the conductance G) the Aharonov–Bohm
conductance GAB, which we would measure if the field was applied
only inside the ring. The Fourier power spectrum of GAB with
respect to B and V is shown in Fig. 2 inset.

Figure 3 shows how the Aharonov–Bohm conductance GAB

evolves when the bias voltage is changed. The voltage increment
between two successive traces is 0.48 mV. Trace a in Fig. 3 denotes a
minimum of the Aharonov–Bohm conductance at V ¼ 519 mV.
When the voltage is decreased by 2.5 mV (trace b) the Aharonov–
Bohm oscillations have almost vanished. A further decrease of
the voltage by 2.5 mV (trace c) leads again to an increase of the
oscillations. However, the minimum near B ¼ 1:032 T for V ¼
519 mV (trace a) turned into a maximum at V ¼ 514 mV (trace c).
This observation unambiguously demonstrates the symmetry between
the magnetic and the electrostatic Aharonov–Bohm effect. A maxi-
mum GAB (constructive electron–hole interference) is turned into a
minimum GAB (destructive electron–hole interference) either by
increasing the magnetic field by 2.5 mT or by increasing the voltage
by 5 mV. This symmetry is also reflected in the Fourier power
spectrum (Fig. 2 inset) by the peaks around 60.2 mT −1 and
60.1 mV −1.

To obtain a more quantitative analysis, we calculated the correla-
tion function CðDB;DVÞ ¼ 〈GABðB;VÞGABðB þ DB;V þ DVÞ〉,
where the angle brackets denote an ensemble average. The quantity
is shown in Fig. 4. The squares in Fig. 4 denote the experimental
CðDB;DV ¼ 0Þ. Its oscillatory behaviour is again the manifestation
of the magnetic Aharonov–Bohm effect (we denote the period by
BAB). The triangles in Fig. 4 denote the experimental cross-correlation
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Figure 3 Aharonov–Bohm conductance as a function of magnetic field B at

T ¼ 20mK for bias voltages separated by 0.48 mV. The traces have been offset by

5 mS with respect to the conductance-axis for clarity. The Aharonov–Bohm

conductance GAB has been extracted from G by rejecting the Fourier components

of G for magnetic frequencies smaller than 0.1mT−1. The bold traces a–c in the

rectangular box show an example of the combined manifestation of the magnetic

and electrostatic Aharonov–Bohm effect.

Figure 4 Normalized correlation function versus DB/BAB at T ¼ 20mK. The

correlation function CðDB;DVÞ ¼ 〈GABðB;VÞGABðB þ DB;V þ DVÞ〉 has been nor-

malized to the variance Cð0; 0Þ ¼ 〈G2
AB〉. Squares, triangles and circles correspond

to DV ¼ 0; 5 and 10 mV, respectively. The correlation functions are calculated from

a total data set consisting of 350 conductance traces as a function of B between

1.0 and 1.1Tor 2.0 and 2.1T. These traces are measured at different voltages in the

range 395–533 mV. The theoretical correlation function depends only on two

parameters: t0 and tf, which is the time during which an electron–hole pair

preserves its phase memory. A close agreement between the experimental

results and theory (full lines) is found for to ¼ 300 ps and tf ¼ 300 ps. These

values are consistent with previous experiments14.
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Electrostatic A-B effect

tunnel barriers permit the application of a
potential which is used to inject electrons
and holes into opposite arms of the ring

electron and hole recombine at the other
tunnel junction with a relative phase shift
dependent on the enclosed magnetic flux

sweeping the magnetic field
results in Aharonov-Bohm
oscillations
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Abstract. The evolution /Y( t)) of asystem with slowly-varying Hamiltonian f?(Rr) depends 
not only on the slowness parameter fl but also on Planck's constant h. For systems with 
two (or more) classically separated phase-space regions which are quantally connected by 
tunnelling, the curves of instantaneous energy levels display hyperbolic near-degeneracies 
rather than crossings. In such cases the limits R + 0 ( h  fixed and small) and h + 0 (R fixed 
and small) lead to opposite behaviour of I 'P (1) ) .  As an illustration, the uniform semiclassical 
adiabatic behaviour (fl and h small, R / h  arbitrary) is calculated exactly for a double-well 
potential for which one well gets shallower as the other gets deeper. 

1. Introduction 

The adiabatic limit is the limit of slow change, and has given rise to two theorems, 
one for classical systems and one for quantal systems. In its simplest form, the classical 
adiabatic theorem (Arnol'd 1978) concerns integrable Hamiltonians H(qi,  pi; &(ant)) 
as fl + O ,  that is Hamiltonians depending on parameters R k  which vary slowly with 
time, as well as on N coordinates and momenta q, and pi, and whose orbits for fixed 
Rk are confined to N-tori in the 2N-dimensional phase space. The theorem states 
that the action integrals I, around the N irreducible cycles 7, of the tori, defined as 

are conserved in slow changes of the parameters Rk. The quantal adiabatic theorem 
(Messiah 1962) concerns evolution under the time-dependent Hamiltonian operator 
f i ( R k ( l ) ) = H ~ ~ l , f i i ;  R k ( f l f ) )  and states that a system which starts at t = O  in an 
eigenstate of H(R,(o) )  will remain for all t in the corresponding eigenstate of f i ( R k ( f ) ) ,  
provided the R k ( t )  change slowly ( f l+0)  and the state is never degenerate. 

It is natural to seek to connect these two theorems by means of the semiclassical 
limit, i.e. h. -j 0, and indeed such attempts played an important part in the development 
of quantum mechanics (Born 1960) by leading to the suggestion that (for integrable 
systems) the classical objects which correspond to quantum stationary states are 
phase-space tori. A strong form of this connection has been asserted by Hwang and 
Pechukas (1977)' who claimed that the asymptotic limits h. + 0 and Cl+ 0 are equivalent. 
Their argument is based on scaling: in the Schrodinger equation 

ih. d ) * ) / r ? t =  f i (Rk( f l f ) ) l* ) ,  (2) 

t Permanent address: H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL,  LJK. 
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R can be eliminated from fi by defining R t  = T, leading to the replacement of h by 
Rh on the left-hand side. This argument is ill-founded because the notation fi conceals 
an h dependence (whose explicit form is different for different representations) which 
persists after tscaling, leaving an equation depending on h as well as Rh. 

My purpose here is to  point out that there is even a class of systems for which the 
semiclassical limit and the adiabatic limit flatly contradict each other. These systems 
involve pairs of quantum states associated with classical trajectories in separate regions 
of classical phase space, which are connected quantally by tunnelling. A simple model 
for such systems is set up in § 2 and solved in § 3. Some generalisations, and also 
possible implications for the difficult problem of semiclassical quantisation of non- 
integrable systems are discussed in § 4. 

2. The changing double-well potential 

Consider a particle of mass m moving in one dimension with energy E in the 
time-dependent potential V(q, t), illustrated in figure 1,  whose left-hand well (called 
L) gets shallower and whose right-hand well (R) gets deeper as shape parameters 
& ( t )  change slowly. Only energies E less than the energy of the barrier top will be 
considered. Thus there are two distinct classical motions with each E, and two actions 
IL and IR, which may be considered to be the parameters & ( f )  and which are given 
(cf (1)) by 

where the limits of integration are the classical turning points (figure 1). 

Figure 1. Changing double-well potential. 

In the simplest semiclassical approximation, each well supports separate families 
of localised quantum stationary states 14:) and 14;) with quantum numbers n and m ;  
the exponential tails leaking out of each well may be neglected. The energies 

of the states are given by the Bohr-Sommerfeld rule 

Successive levels in each family are separated by hwL and hwR, where w = (al/aE)-' 
is the frequency of classical motion in each well. As IL and I R  change, the energies 

”The adiabatic limit and the semiclassical limit,” M.V. Berry, J. Phys. A: Math. Gen. 17, 1225-1233 (1984).
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Adiabatic & semiclassical limits

Consider the time dependent
Schrödinger equation which de-
pends on a time varying parameter
Rk(Ωt)

It has been claimed that these two
limits are identical since by redefining
time as τ ≡ Ωt the two quantities are
symmetric and equivalent

M.V. Berry in J. Phys. A: Math. Gen.
17, 1225-1233 (1984), shows that this
postulate is untrue and analyzes a case
where the two are fully contradictory

Consider a particle of energy E in a
double well which changes shape adi-
abatically

i~
∂

∂t
|Ψ〉 = H(Rk(Ωt))|Ψ〉

the system is adiabatic when
Ω → 0 and semiclassical when
~→ 0

i~Ω
∂

∂τ
|Ψ〉 = H(Rk(τ))|Ψ〉

E

V
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Berry’s double well

Considering only energies E less than the bar-
rier height, each side of the well has it’s own
set of eigenstates |φmL 〉, and |φnR〉 with quan-
tum numbers m and n

if the exponential tails of the eigenstates are
ignored, the eigenvalues (energies) can be
written using the WKB approximation (re-
member that?) which is nothing more than
the classical action integral

E

V

q
L+

q
L-

q
R-

q
R+

IL(E , t) =
1

π

∫ qL+

qL−

√
2m[E − V (q, t)] dq = (m + 1

2 )~

IR(E , t) =
1

π

∫ qR+

qR−

√
2m[E − V (q, t)] dq = (n + 1

2 )~
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Berry’s double well

The energy levels on
each side are sepa-
rated by ~ωL and ~ωR

respectively where ωL

and ωR are given by
the derivatives of the
action integrals

1

ω
=

∂I

∂E

E ER EL

EL ER

E-

E+

A

ti tf
π/Ω

|φL

|φR

|φR

|φL|ψ+

|ψ 

hωL

hωR

t

as the well depths change slowly with time, the energies change linearly
and cross each other when the wells have equal depth

these degeneracies will be lifted by mixing such that there is an energy gap
and

|ψ±〉 = α±|φL〉+ β±|φR〉
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Berry’s double well
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Suppose the system
starts in state |φL〉 at
time ti

what state will it be
found in at time tf
given that the adia-
batic parameter Ω �
ωL, ωR?

classically, the system must remain in the same well (no tunneling) and
thus must jump from mixed state |ψ−〉 to mixed state |ψ+〉 staying in |φL〉

according to the quantum adiabatic approximation, however, the system
will remain in |ψ−〉 throughout and thus find itself in |φR〉 at tf
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Berry’s double well

At any time t, the state of the system can be described by a linear
combination of the two single well states

|Ψ(t)〉 = aL(t)e−
i
~
∫ t

0 EL(t′)dt′ |φL〉+ aR(t)e−
i
~
∫ t

0 ER(t′)dt′ |φR〉

where the boundary condition is that aL(ti ) = 1 and aR(ti ) = 0 and
|aL|2 + |aR |2 = 1

in this basis, the Hamiltonian is a
2× 2 matrix

and the eigenvalues become

H =

(
EL(t) ∆(t)/2

∆(t)/2 ER(t)

)
E± = 1

2 [EL(t) + ER(t)]± 1
2

√
[EL(t)− ER(t)]2 + ∆(t)2

where ∆(0) is the gap at the crossing point
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Berry’s double well

Applying the Schrödinger equation to the general time dependent solution
gives determining equations for the coefficients aL(t) and aR(t)

daL(t)

dt
=

∆(t)aR(t)

2i~
e

i
~
∫ t

0 [EL(t′)−ER(t′)]dt′

daR(t)

dt
=

∆(t)aL(t)

2i~
e−

i
~
∫ t

0 [EL(t′)−ER(t′)]dt′

applying the WKB approximation gives an expression for the energy gap
∆(0) and thus the probability of finding the system in |φL〉 at tf

|aL(tf )|2 = e−[
√
ωLωR/Ω]e−2K/~

K =

∫ qR−

qL+

√
2m(V (q, t)− E ) dq

where e−2K/~ is the tunnelling probability
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Berry’s double well

|aL(tf )|2 = e−[
√
ωLωR/Ω]e−2K/~

= e−1/λ |aL(tf )|2 =

{
1, ~→ 0

0, Ω→ 0

thus the semiclassical and quantum adiabatic limits give opposite results!

λ =
πΩe2K/~
√
ωLωR

λ =

{
∞, ~→ 0

0, Ω→ 0

the numerical solu-
tion as a function
of the parameter λ
shows how this evo-
lution takes place

adiabatic

semiclassical
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Quantum paradoxes and other fun stuff

“About your cat, Mr. Schrödinger – I have good news and bad news . . . ”
C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 22 / 28



Einstein Podolsky Rosen paradox

.DESC RI PT ION OF P H YSI CAL REALITY

of lanthanum is 7/2, hence the nuclear magnetic
moment as determined by this analysis is 2.5
nuclear magnetons. This is in fair agreement
with the value 2.8 nuclear magnetons deter-
mined, from La III hyperfine structures by the
writer and N. S. Grace. 9

' M. F. Crawford and N. S. Grace, Phys. Rev. 4'7, 536
(1935).

This investigation was carried out under the
supervision of Professor G. Breit, and, I wish to
thank him for the invaluable advice and assis-
tance so freely given. I also take this opportunity
to acknowledge the award of a Fellowship by the
Royal Society of Canada, and to thank the
University of Wisconsin and the Department of
Physics for the privilege of working here.
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete' ?

A. EINsTEIN, B. PQDoLsKY AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey

(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufFicient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

A NY serious consideration of a physical
theory must take into account the dis-

tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a
physical theory, we may ask ourselves two ques-
tions: (1) "Is the theory correct?" and (2) "Is
the description given by the theory complete?"
It is only in the case in which positive answers

may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

Whatever the meaning assigned to the term
conzp/eEe, the following requirement for a com-
plete theory seems to be a necessary one: every

element of the physical reality must have a counter

part in the physical theory We shall ca. 11 this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with certainty (i.e. , with

probability equal to unity) the value of a physical
quantity, then there exists an element of physical
reality corresponding lo this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recognizing a
physical reality, at least provides us with one
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where a is a number, then the physical quantity
A has with certainty the value a whenever the
particle is in the state given by P. In accordance
with our criterion of reality, for a particle in the
state given by P for which Eq. (1) holds, there
is an element of physical reality corresponding
to the physical quantity A. Let, for example,

'p —e (pre/ p) ppg (2)

where h is Planck's constant, po is some constant
number, and x the independent variable. Since
the operator corresponding to the momentum of
the particle is

p = (h/2rri) 8/Bx,
we obtain

p' =pp = (h/2iri) 8$/Bx =p pp (4)

Thus, in the state given by Eq. (2), the momen-

tum has certainly the value pp. It thus has
meaning to say that the momentum of .the par-
ticle in the state given by Eq. (2) is real.

On the other hand if Eq. (1) does not hold,
we can no longer speak of the physical quantity
A having a particular value. This is the case, for
example, with the coordinate of the particle. The
operator corresponding to it, say g, is the operator
of multiylication by the independent variable.
Thus,

such way, whenever the conditions set down in

it occur. Regarded not as a necessary, but
merely as a sufficient, condition of reality, this
criterion is in agreement with classical as well as
quantum-mechanical ideas of reality.

To illustrate the ideas involved let us consider
the quantum-mechanical description of the
behavior of a particle having a single degree of
freedom. The fundamental concept of the theory
is the concept of state, which is supposed to be
completely characterized by the wave function

P, which is a function of the variables chosen to
describe the particle's behavior. Corresponding
to each physically observable quantity A there
is an operator, which may be designated by the
same letter.

If P is an eigenfunction of the operator A, that
is, if

A/=a—g,

In accordance with quantum mechanics we can
only say that the relative probability that a
measurement of the coordinate will give a result
lying between a and b is

P(a, b) = PPdx= I dx=b a. —(6)

Since this probability is independent of a, but
depends only upon the difference b —a, we see
that all values of the coordinate are equally
probable.

A definite value of the coordinate, for a par-
ticle in the state given by Eq. (2), is thus not
predictable, but may be obtained only by a
direct measurement. Such a measurement how-
ever disturbs the particle and thus alters its
state. After the coordinate is determined, the
particle will no longer be in the state given by
Eq. (2). The usual conclusion from this in

quantum mechanics is that when the momentnm

of a particle is known, its coordhnate has no physical
reali ty.

More generally, it is shown in quantum me-
chanics that, if the operators corresponding to
two physical quantities, say A and B, do not
commute, that is, if AB/BA, then the precise
knowledge of one of them precludes such a
knowledge of the other. Furthermore, any
attempt to determine the latter experimentally
will alter the state of the system in such a way
as to destroy the knowledge of the first.

From this follows that either (1) t' he guanturn-
mechanical description of rea1ity given by the wave

function is not cornplele or (2) when the operators
corresponding .to two physical qlantities do not
commute the two quantifies cannot have simul-
taneous reality. For if both of them had simul-
taneous reality —and thus definite values —these
values would enter into the complete description,
according to the condition of completeness. If
then the wave function provided such a complete
description of reality, it would contain these
values; these would then be predictable. This
not being the case, we are left with the alter-
natives stated.

In quantum mechanics it is usually assumed
that the wave function does contain a complete
description of the physical reality of the system
in the state to which it corresponds. At first

“Can quantum-mechanical description of physical reality be considered complete?,” A. Einstein, B. Podolsky, and N. Rosen,
Physical Review 47, 777-779 (1935).
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Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator

and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator

and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~

=
~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~

= p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

If ψ is an eigenfuction of an opera-
tor A, then we know its expectation
value, a

for example take the momentum
operator and the eigenfuction

Aψ = aψ

p =
~
i

∂

∂x

ψ = e ip0x/~

pψ =
~
i

∂

∂x
e ip0x/~ =

~
i

(
i

~
p0

)
e ip0x/~ = p0ψ

thus the momentum in state ψ is said to be real

C. Segre (IIT) PHYS 406 - Spring 2019 April 04, 2019 24 / 28



Einstein Podolsky Rosen paradox

If Aψ = aψ does not hold, how-
ever, A cannot be said to have a
particular value as we know from
the position operator q

qψ = xe ip0x/~ 6= aψ

P(a, b) =

∫ b

a
ψ∗ψ dx =

∫ b

a
dx = b − a

there is an equal probability of measuring any value of the position

this is a specific instance of the fact that if two operators do not commute
([A,B] 6= 0) then precise knowledge of one precludes such knowledge of
the other

the authors thus conclude that

1. the quantum-mechanical description of reality given by the wave
function is not complete, or

2. when the operators corresponding to two physical quantities do not
commute the two quantities cannot have simultaneous reality
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Einstein Podolsky Rosen paradox

Suppose that we have two systems, I and II which interact over a time
period 0 ≤ t ≤ T

if we know the state of each system before t = 0, then by using the
Schrödinger equation, we can calculate the state of the combined system
I+II at any subsequent time, specifically t > T and we call it Ψ

suppose that a physical quantity A
has eigenvalues and eigenfunctions

then the system-wide wavefunction
as a function of x1 is

where ψn(x2) are the “coefficients”
of the expansion in un(x1)

a1, a2, a3, . . .

u1(x1), u2(x1), u3(x1), . . .

Ψ(x1, x2) =
∞∑
n=1

ψn(x2)un(x1)

if A is now measured and is found to have value ak then the first system
must be left in state uk(x1) and the second system must be, therefore
found in state ψk(x2) so that the combined state is Ψ = ψk(x2)uk(x1)
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Einstein Podolsky Rosen paradox

If instead of operator A, we choose
to expand the overall wavefunction
in terms of the eigenfunctions of B,
then we have

b1, b2, b3, . . .

v1(x1), v2(x1), v3(x1), . . .

Ψ(x1, x2) =
∞∑
s=1

ϕs(x2)vs(x1)

if B is measured and found to be br , then the combined system can be
said to be in the state Ψ = ϕr (x2)vr (x1) and the second system must be
in state ϕr (x2)

Thus, as a consequence of two different measurements made on System I,
System II can be left in states with two different wave functions, even
when it is far away from, and not interacting with System I

Thus one can assign two different wave functions, ψk(x2) and ϕr (x2), to
the same reality (System II after interaction with System I)
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Einstein Podolsky Rosen paradox

Suppose that ψk(x2) and ϕr (x2) are eigenfunctions of two non-commuting
operators, P and Q with eigenvalues pk and qr

By measuring either A or B on System I, we are able to predict with
certainty, and without disturbing System II, either the value of P (pk) or
Q (qr ) According to our criterion for reality, in the first case, P must be
an element of reality and in the second case, Q must be an element of
reality but ψk(x2) and ϕr (x2) were shown to be part of the same reality
and this leads to a contradiction of the postulate that “when the operators
corresponding to two physical quantities do not commute the two
quantities cannot have simultaneous reality”

Thus, the authors conclude that “the quantum-mechanical description of
reality given by the wave function is not complete”

If this “realist” version of quantum mechanics is correct, the “complete”
description of reality must include some local hidden variable(s) which
specify the state of the system completely
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