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Radial solution

Returning to the radial equation, where the potential is included
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Equation for u(r)

We can now obtain a differential
equation for u(r)

multiplying by r , rearranging, and
multiplying by −~2/2mr2

This looks like a time-independent
Schrödinger equation with an effec-
tive potential Veff (r) whose solution
is normalized as

∫∞
0 |u(r)|2 dr = 1

r
d2u

dr2
− 2mr2

~2
[V (r)− E ]

u

r
= l(l + 1)

u

r

r2
d2u

dr2
− 2mr2

~2
[V (r)− E ] u = l(l + 1)u

r2
d2u

dr2
−
[

2mr2

~2
V (r)u + l(l + 1)u

]
= −2mr2

~2
Eu

− ~2

2m

d2u

dr2
+

[
V (r) +

~2

2m

l(l + 1)

r2

]
u = Eu
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Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1

Consider the potential for the infinite spherical well

inside the well the wave equation is

dividing by ~2/2m and rearranging

substituting k =
√

2mE/~

We must solve this for each value of l separately.
The l = 0 case is the simplest

V (r) =

{
0, r ≤ a

∞, r ≥ a

Eu = − ~2

2m

d2u

dr2
+

~2

2m

l(l + 1)

r2
u

d2u

dr2
=

[
l(l + 1)

r2
− 2mE

~2

]
u

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Example 4.1 (cont.)

For l = 0, we need to impose the boundary condi-
tion u(a) = 0.

this has the usual solution

since R(r) = u/r , the cos(kr) solution would be
infinite at the origin and thus B = 0

applying the boundary condition

thus, ka = nπ where n is an integer and the ener-
gies for the l = 0 case are

Normalizing (A =
√

2/a) and adding the angular
part of the wave function Y 0

0 = 1/
√

4π

d2u

dr2
= −k2u

u(r) = A sin(kr) +��B cos(kr)

= A sin(kr)

u(a) = A sin(ka) = 0

En0 =
n2π2~2

2ma2
, n = 1, 2, 3, . . .

ψn00 =
1√
2πa

sin(nπr/a)

r
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applying the boundary condition

thus, ka = nπ where n is an integer and the ener-
gies for the l = 0 case are

Normalizing (A =
√

2/a) and adding the angular
part of the wave function Y 0

0 = 1/
√

4π

d2u

dr2
= −k2u

u(r) = A sin(kr) +��B cos(kr)

= A sin(kr)

u(a) = A sin(ka) = 0

En0 =
n2π2~2

2ma2
, n = 1, 2, 3, . . .

ψn00 =
1√
2πa

sin(nπr/a)

r
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Solutions for l = 0

ψn00 =
1√
2πa

sin(nπr/a)

r

0 a

ψ
n
0
0

r
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Solutions for l = 0

ψn00 =
1√
2πa

sin(nπr/a)

r

0 a

ψ
1
0
0

r
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Solutions for l = 0

ψn00 =
1√
2πa

sin(nπr/a)

r

0 a

ψ
2
0
0

r
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Solutions for l = 0

ψn00 =
1√
2πa

sin(nπr/a)

r

0 a

ψ
3
0
0

r

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I 3D radial solution



Solutions for l = 0

ψn00 =
1√
2πa

sin(nπr/a)

r

0 a

ψ
4
0
0

r
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Solutions for l = 0
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n
0
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r
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Example 4.1 (cont.)

What about the solutions for l 6= 0?

they involve Bessel functions; the general solution
being

jl (x) are spherical Bessel functions of order l and
nl (x) are spherical Neumann functions of order l .

while spherical Bessel functions are finite at the ori-
gin, spherical Neumann functions are infinite and
thus we again set Bl = 0

u(r) = Al r jl (kr) + Bl r nl (kr)

jl (x) = (−x)l

(
1

x

d

dx

)l sin x

x

nl (x) = −(−x)l

(
1

x

d

dx

)l cos x

x

R(r) = Al jl (kr)

we still must apply the boundary condition that jl (ka) = 0 but this is a bit more complex than
for the l = 0 case
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Spherical Bessel functions

jl (x) = (−x)l

(
1

x

d

dx

)l sin x

x

j0(x) =
sin x

x

j1(x) = (−x)
1

x

(
cos x

x
− sin x

x2

)
=

sin x

x2
− cos x

x

j2(x) = (−x)2
(

1

x

d

dx

)
x cos x − sin x

x3

= x

(
−x sin x

x3
− 3

x cos x − sin x

x4

)
=

(
3 sin x − 3x cos x − x2 sin x

x3

) 0

+1

0 5 10

j l(
x
)

x
Clearly the roots are not at nice, simple, locations!
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Spherical Bessel functions
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x

Clearly the roots are not at nice, simple, locations!
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Solutions for all l

jl (ka) = 0

k =
1

a
βnl , βnl are the roots

Enl =
~2

2ma2
β2nl

βn1 βn2 βn3

j0 π 2π 3π
j1 4.493 7.726 10.904
j2 5.762 9.906 12.325
j3 6.988 10.420 13.698

The wavefunctions are thus:

ψnlm(r , θ, φ) = Anl jl

(
βnl r

a

)
Y m

l (θ, φ)

these are (2l + 1)-fold degenerate states, that is, the energy does not depend on the quantum
numbers which give rise to the degeneracy
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• Hydrogen atom potential

• Asymptotic solution

• Differential equation for polynomial
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Hydrogen atom

The potential of the hydrogen atom is sim-
ply the Coulomb potential, which is spheri-
cally symmetric

where we assume that the nucleus (proton)
is stationary because it is much more mas-
sive than the electron

V (r) = − e2

4πε0

1

r

we can substitute this potential into the ra-
dial equation

dividing by E and rearranging

rewriting it with common terms

− ~2

2m

d2u

dr2
+

[
V (r) +

~2

2m

l(l + 1)

r2

]
u = Eu

− ~2

2mE

d2u

dr2
=

[
1 +

e2

4πε0E

1

r
− ~2

2mE

l(l + 1)

r2

]
u

− ~2

2mE

d2u

dr2
=

[
1 +

me2

2πε0~2
~2

2mE

1

r
− ~2

2mE

l(l + 1)

r2

]
u

initially we are only interested in bound states with E < 0 and so we can make the usual
substitution κ =

√
−2mE/~
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Hydrogen atom (cont.)

1

κ2
d2u

dr2
=

[
1− me2

2πε0~2κ
1

κr
+

l(l + 1)

(κr)2

]
u

d2u

dρ2
=

[
1− ρ0

ρ
+

l(l + 1)

ρ2

]
u

As ρ→∞, the constant term dominates

and the solution is of the form

but the second term is unbounded in the
limit of ρ→∞, thus B = 0

if we substitute

ρ ≡ κr , ρ0 ≡
me2

2πε0~2κ

just as with the harmonic oscillator, we start
with the asymptotic solution and then gen-
eralize

d2u

dρ2
≈ u

u(ρ)|ρ→∞ = Ae−ρ +��Beρ

however, in the limit of ρ→ 0, the centrifugal term is dominant
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Hydrogen atom (cont.)

for ρ→ 0 the solution must satisfy

this has a solution

this solution can be shown to satisfy the
equation

but the second term blows up as ρ→ 0, so
D = 0 and

d2u

dρ2
≈ l(l + 1)

ρ2
u

u(ρ) = Cρl+1 +
D

ρl

du

dρ
= (l + 1)Cρl − l

D

ρ(l+1)

d2u

dρ2
= l(l + 1)Cρl−1 + l(l + 1)

D

ρ(l+2)

u(ρ)|ρ→0 ∼ Cρl+1

the full solution we seek, including the asymptotic portions is thus

u(ρ) = ρl+1v(ρ)e−ρ

where v(ρ) is a polynomial in ρ
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Asymptotic behavior

u(ρ) = ρl+1e−ρv(ρ)

The exponential term serves to limit the asymp-
totic behavior of the wavefunction

It remains only to determine the polynomial
“wavy part” of the solution, v(ρ). This is done
in the same way as was the analytical solution
of the harmonic oscillator.
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The wavy part

The polynomial can be determined by sub-
stituting this solution into the original
Schrödinger equation for u(ρ)

d2u

dρ2
=

[
1− ρ0

ρ
+

l(l + 1)

ρ2

]
u

u(ρ) = ρl+1e−ρv(ρ)

du

dρ
=

(l + 1)ρle−ρv − ρl+1e−ρv + ρl+1e−ρ
dv

dρ

= ρle−ρ
[

(l + 1− ρ)v + ρ
dv

dρ

]
d2u

dρ2
=

lρl−1e−ρ
[

(l + 1− ρ)v + ρ
dv

dρ

]
− ρle−ρ

[
(l + 1− ρ)v + ρ

dv

dρ

]
+ ρle−ρ

[
−v + (l + 1− ρ)

dv

dρ
+

dv

dρ
+ ρ

d2v

dρ2

]

= ρle−ρ
{

ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
+

[
ρ− 2(l + 1) +

l(l + 1)

ρ

]
v

}
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The Schrödinger equation for v(ρ)

u(ρ) = ρl+1e−ρv(ρ),
d2u

dρ2
= ρle−ρ

{
ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
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ρ− 2(l + 1) +

l(l + 1)

ρ

]
v

}

Substituting into the Schrödinger equation for u(ρ)

0 =
d2u

dρ2
−
[

1− ρ0
ρ

+
l(l + 1)

ρ2

]
u =

d2u

dρ2
−
[

1− ρ0
ρ

+
l(l + 1)

ρ2

]
ρl+1e−ρv

= ���
ρle−ρ

{
ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
+

[
�ρ− 2(l + 1) +

�
�
�
�l(l + 1)

ρ

]
v

−

[
�ρ− ρ0 +

�
�

�
�l(l + 1)

ρ

]
v

}

0 = ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ

+ [ρ0 − 2(l + 1)]v

we will solve this in the same way as the harmonic oscillator, assuming that v(ρ) is an infinite
polynomial in ρ

v(ρ) =
∞∑

j=0

cjρ
j
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