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Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate
system chosen

A

ρ

φ

A

x

y

A x’

y’

A

one way is to give the length and the angle with respect to
the horizontal, but a more consistent method would be to
define a coordinate system and use components to define
the vector

a different choice gives different components but it is the
same vector, independent of choice of axes (basis)

~A = Ax x̂ + Ay ŷ

= A′x x̂
′ + A′y ŷ

′
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Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be
represented using any basis that is valid in the space

suppose that the state of a system is represented by a vector |S(t)〉 which lies in Hilbert space

this state can be expressed in different bases

by “coefficients” of expansion in the basis of eigenfunctions of
the position operator, x̂ , with eigenvalues y ,

in the basis of eigenfunctions of the momentum operator, p̂,
with eigenvalues p

or in the basis of eigenfunctions of the Hamiltonian with eigen-
values, En

Ψ(y , t) = 〈y |S(t)〉

Φ(p, t) = 〈p|S(t)〉

cn(t) = 〈n|S(t)〉

these all describe the same vector

Ψ(x , t) =

∫
Ψ(y , t)δ(x − y)dy =

∫
Φ(p, t)

1√
2π~

e ipx/~dp =
∑

cne
−iEnt/~ψn(x)
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Vectors and operators

Formally, vectors are represented with respect to a
specific basis, |en〉, by their coefficients

an operator linearly transforms one vector into an-
other

|α〉 =
∑
n

an|en〉, an = 〈en|α〉

|β〉 =
∑
n

bn|en〉, bn = 〈en|β〉

|β〉 = Q̂|α〉

and its representation with respect to a specific
basis are matrix elements

thus, and closing the inner product with |em〉

Qmn = 〈em|Q̂|en〉

∑
n

bn|en〉 =
∑
n

anQ̂|en〉

∑
n

bn〈em|en〉 =
∑
n

an〈em|Q̂|en〉 → bm =
∑
n

Qmnan

this is simply the definition of a matrix applied to a vector
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Operators in different bases

Just as for a vector, an operator’s representation depends on the basis in which it is expressed

for example, the momentum operator
in position space (the basis of the po-
sition operator) is given by, but in mo-
mentum space it becomes

similarly the position operator has dif-
ferent representations in position and
momentum spaces

operator position space

momentum space

p̂ −i~ ∂
∂x

p

x̂ x i~ ∂
∂p

up to now we have simply described the state of a system by its wavefunction in position
space, Ψ(x , t) which is the representation in the position basis, 〈x |S(t)〉

this is convenient and will continue to be used but it is important to remember that it is just
one possible representation of the state of the system in Hilbert space
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Dirac notation

• Review of “bra-ket” notation

• Subtleties of Dirac notation

• All about operators

• Changing bases
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Dirac bra-ket notation review

Recall that we introduced the Dirac “bra-ket” notation as a simplifying notation for
wavefunctions and inner products

integral bra-ket

ket ψ(x) |ψ〉

bra ψ∗(x) 〈ψ| complex conjugate is implicit

normalization
∫
ψ∗(x)ψ(x)dx = 1 〈ψ |ψ〉 = 1

expectation value
∫
ψ∗Qψdx 〈ψ |Q ψ〉 operator is applied to the right

there are more subtle aspects of this notation which we will discuss now
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More on Dirac notation

In the Dirac formalism, the ket, |α〉, is simply a vector, however the bra, 〈α|, is really a linear
function of vectors in that it has an effect on the vector

in analogy to an operator, which acts on a vector to
its right and produces another vector, a bra acts on a
vector to its right, but produces a number instead

In functional space, it is an integral

In finite-dimensional space the ket is a column vector

and the bra is a row vector and the collection of bras
is called dual space

〈f | =

∫
f ∗[· · · ] dx

|α〉 =


a1
a2
...
an


〈α| =

(
a∗1 a∗2 · · · a∗n

)
this formalism permits us to make a projection oper-
ator, which picks out the projection of a vector onto
one of the basis vectors

P̂ ≡ |α〉〈α|
P̂|β〉 = |α〉〈α||β〉 = 〈α|β〉|α〉
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A few words about operators

In the same way, we can construct the identity
operator for a discrete basis set of vectors

similarly for a continuous basis set, such as the
eigenfunctions of x̂ , we have

and the identity operator becomes

an operator takes a vector in Hilbert space and
transforms it to a new vector in the same space

the sum of two operators is defined as

the product of two operators is dependent on order

∑
n

|en〉〈en| ≡ 1∑
n

|en〉〈en|α〉 =
∑
n

an|en〉 = |α〉

〈ez |ez ′〉 = δ(z − z ′)∫
dz |ez〉〈ez ′ | = 1

Q̂|α〉 = |β〉(
Q̂ + R̂

)
|α〉 = Q̂|α〉+ R̂|α〉

Q̂R̂|α〉 = Q̂
(
R̂|α〉

)
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Functions of operators

It is also possible to have functions of operators, that is, combinations of products and sums of
operators which are often defined by power series

eQ̂ ≡ 1 + Q̂ +
1

2
Q̂

2
+

1

3!
Q̂

3
+ · · ·

1

1− Q̂
≡ 1 + Q̂ + Q̂

2
+ Q̂

3
+ Q̂

4
+ · · ·

ln
(

1 + Q̂
)
≡ Q̂ − 1

2
Q̂

2
+

1

3
Q̂

3 − 1

4
Q̂

4
+ · · ·
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Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity
operator in any basis we have discussed so far:

position, momentum, or energy

1 =

∫
dx |x〉〈x | =

∫
dp|p〉〈p| =

∑
|n〉〈n|

if each of these identity operators acts on the general state vector |S(t)〉, we get

|S(t)〉 =

∫
dx |x〉〈x |S(t)〉 ≡

∫
Ψ(x , t)|x〉dx

|S(t)〉 =

∫
dp|p〉〈p|S(t)〉 ≡

∫
Φ(p, t)|p〉dp

|S(t)〉 =
∑
n

|n〉〈n|S(t)〉 ≡
∑
n

cn(t)|n〉

where the position, momentum and energy eigenvectors are the components of the |S(t)〉 in
their respective spaces
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Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is
represented

the position operator in the position basis is

while in the momentum basis it becomes

x̂ −→ x

x̂ −→ i~
∂

∂p

Dirac notation allows us to abstract the action of the operator and then express it in any basis
desired by taking an inner product with the appropriate basis set

consider the operation of x̂ on the state ket |S(t)〉

in the position basis, it is expressed as the action of
the position operator in the x basis

while in the momentum basis, it is the action of the
position operator in the p basis

〈x |x̂ |S(t)〉 = xΨ(x , t)

〈p|x̂ |S(t)〉 = i~
∂Φ(p, t)

∂p
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