Hilbert space representations

Hilbert space representations

- Alternative bases

Hilbert space representations

- Alternative bases
- Representation of Hilbert space

Hilbert space representations

- Alternative bases
- Representation of Hilbert space
- Vector \& operator representations

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate system chosen

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

one way is to give the length and the angle with respect to the horizontal, but a more consistent method would be to define a coordinate system and use components to define the vector

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

one way is to give the length and the angle with respect to the horizontal, but a more consistent method would be to define a coordinate system and use components to define the vector

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

one way is to give the length and the angle with respect to the horizontal, but a more consistent method would be to define a coordinate system and use components to define the vector

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}
$$

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

one way is to give the length and the angle with respect to the horizontal, but a more consistent method would be to define a coordinate system and use components to define the vector

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}
$$

a different choice gives different components but it is the same vector, independent of choice of axes (basis)

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

one way is to give the length and the angle with respect to the horizontal, but a more consistent method would be to define a coordinate system and use components to define the vector

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}
$$

a different choice gives different components but it is the same vector, independent of choice of axes (basis)

Alternative bases

A vector in 2D (or 3D) space can be represented differently depending on the coordinate systern chosen

one way is to give the length and the angle with respect to the horizontal, but a more consistent method would be to define a coordinate system and use components to define the vector

$$
\begin{aligned}
\vec{A} & =A_{x} \hat{x}+A_{y} \hat{y} \\
& =A_{x}^{\prime} \hat{x}^{\prime}+A_{y}^{\prime} \hat{y}^{\prime}
\end{aligned}
$$

a different choice gives different components but it is the same vector, independent of choice of axes (basis)

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases
by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y,

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases
by "coefficients" of expansion in the basis of eigenfunctions of

$$
\Psi(y, t)=\langle y \mid \mathcal{S}(t)\rangle
$$ the position operator, \hat{x}, with eigenvalues y,

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases by "coefficients" of expansion in the basis of eigenfunctions of

$$
\Psi(y, t)=\langle y \mid \mathcal{S}(t)\rangle
$$ the position operator, \hat{x}, with eigenvalues y, in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y, in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p

$$
\Psi(y, t)=\langle y \mid \mathcal{S}(t)\rangle
$$

$$
\Phi(p, t)=\langle p \mid \mathcal{S}(t)\rangle
$$

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y, in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p
or in the basis of eigenfunctions of the Hamiltonian with eigenvalues, E_{n}

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y, in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p
or in the basis of eigenfunctions of the Hamiltonian with eigenvalues, E_{n}

$$
\Psi(y, t)=\langle y \mid \mathcal{S}(t)\rangle
$$

$$
\Phi(p, t)=\langle p \mid \mathcal{S}(t)\rangle
$$

$$
c_{n}(t)=\langle n \mid \mathcal{S}(t)\rangle
$$

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases
by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y,
in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p
or in the basis of eigenfunctions of the Hamiltonian with eigenvalues, E_{n}
these all describe the same vector

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases
by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y,
in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p
or in the basis of eigenfunctions of the Hamiltonian with eigenvalues, E_{n}
these all describe the same vector

$$
\Psi(x, t)=\int \Psi(y, t) \delta(x-y) d y
$$

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases
by "coefficients" of expansion in the basis of eigenfunctions of the position operator, \hat{x}, with eigenvalues y,
in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p
or in the basis of eigenfunctions of the Hamiltonian with eigenvalues, E_{n}
these all describe the same vector

$$
\Psi(x, t)=\int \Psi(y, t) \delta(x-y) d y=\int \Phi(p, t) \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} d p
$$

Representation of Hilbert space

Hilbert space can be considered as an abstract vector space whose members can be represented using any basis that is valid in the space
suppose that the state of a system is represented by a vector $|\mathcal{S}(t)\rangle$ which lies in Hilbert space this state can be expressed in different bases
by "coefficients" of expansion in the basis of eigenfunctions of

$$
\Psi(y, t)=\langle y \mid \mathcal{S}(t)\rangle
$$

the position operator, \hat{x}, with eigenvalues y,
in the basis of eigenfunctions of the momentum operator, \hat{p}, with eigenvalues p
or in the basis of eigenfunctions of the Hamiltonian with eigen-

$$
\Phi(p, t)=\langle p \mid \mathcal{S}(t)\rangle
$$ values, E_{n}

$$
c_{n}(t)=\langle n \mid \mathcal{S}(t)\rangle
$$

these all describe the same vector

$$
\Psi(x, t)=\int \Psi(y, t) \delta(x-y) d y=\int \Phi(p, t) \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} d p=\sum c_{n} e^{-i E_{n} t / \hbar} \psi_{n}(x)
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle \\
& |\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle
\end{aligned}
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients

$$
\begin{array}{ll}
|\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, & a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
|\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle, & b_{n}=\left\langle e_{n} \mid \beta\right\rangle
\end{array}
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle
\end{aligned}
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle
\end{aligned}
$$

and its representation with respect to a specific basis are matrix elements

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle
\end{aligned}
$$

$$
Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements
thus,

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements
thus,

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n}^{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle \\
& \quad Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
\end{aligned}
$$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements
thus,

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n}^{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle \\
& \quad Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
\end{aligned}
$$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle=\sum_{n} a_{n} \hat{Q}\left|e_{n}\right\rangle
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements
thus, and closing the inner product with $\left|e_{m}\right\rangle$

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n}^{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle \\
& Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
\end{aligned}
$$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle=\sum_{n} a_{n} \hat{Q}\left|e_{n}\right\rangle
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements
thus, and closing the inner product with $\left|e_{m}\right\rangle$

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n}^{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle \\
& Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
\end{aligned}
$$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle=\sum_{n} a_{n} \hat{Q}\left|e_{n}\right\rangle
$$

$$
\sum_{n} b_{n}\left\langle e_{m} \mid e_{n}\right\rangle
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into another
and its representation with respect to a specific basis are matrix elements
thus, and closing the inner product with $\left|e_{m}\right\rangle$

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle \\
& |\beta\rangle=\sum_{n}^{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle \\
& Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
\end{aligned}
$$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle=\sum_{n} a_{n} \hat{Q}\left|e_{n}\right\rangle
$$

$$
\sum_{n} b_{n}\left\langle e_{m} \mid e_{n}\right\rangle=\sum_{n} a_{n}\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into an-

$$
|\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle
$$ other

$$
\begin{aligned}
& |\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle \\
& |\beta\rangle=\hat{Q}|\alpha\rangle
\end{aligned}
$$

and its representation with respect to a specific

$$
Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
$$

basis are matrix elements
thus, and closing the inner product with $\left|e_{m}\right\rangle$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle=\sum_{n} a_{n} \hat{Q}\left|e_{n}\right\rangle
$$

$$
\sum_{n} b_{n}\left\langle e_{m} \mid e_{n}\right\rangle=\sum_{n} a_{n}\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle \quad \rightarrow \quad b_{m}=\sum_{n} Q_{m n} a_{n}
$$

Vectors and operators

Formally, vectors are represented with respect to a specific basis, $\left|e_{n}\right\rangle$, by their coefficients
an operator linearly transforms one vector into an-

$$
|\alpha\rangle=\sum_{n} a_{n}\left|e_{n}\right\rangle, \quad a_{n}=\left\langle e_{n} \mid \alpha\right\rangle
$$ other

$$
|\beta\rangle=\sum_{n} b_{n}\left|e_{n}\right\rangle, \quad b_{n}=\left\langle e_{n} \mid \beta\right\rangle
$$

and its representation with respect to a specific

$$
Q_{m n}=\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle
$$

basis are matrix elements
thus, and closing the inner product with $\left|e_{m}\right\rangle$

$$
\sum_{n} b_{n}\left|e_{n}\right\rangle=\sum_{n} a_{n} \hat{Q}\left|e_{n}\right\rangle
$$

$$
\sum_{n} b_{n}\left\langle e_{m} \mid e_{n}\right\rangle=\sum_{n} a_{n}\left\langle e_{m}\right| \hat{Q}\left|e_{n}\right\rangle \quad \rightarrow \quad b_{m}=\sum_{n} Q_{m n} a_{n}
$$

this is simply the definition of a matrix applied to a vector

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed
for example, the momentum operator in position space (the basis of the pooperator position space sition operator) is given by,

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed for example, the momentum operator in position space (the basis of the position operator) is given by,
operator position space

$$
\hat{p} \quad-i \hbar \frac{\partial}{\partial x}
$$

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed for example, the momentum operator in position space (the basis of the position operator) is given by, but in momentum space it becomes
operator position space momentum space

$$
\hat{p} \quad-i \hbar \frac{\partial}{\partial x} \quad p
$$

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed for example, the momentum operator in position space (the basis of the position operator) is given by, but in momentum space it becomes
similarly the position operator has different representations in position and momentum spaces
operator position space momentum space

$$
\hat{p} \quad-i \hbar \frac{\partial}{\partial x} \quad p
$$

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed for example, the momentum operator in position space (the basis of the position operator) is given by, but in momentum space it becomes
similarly the position operator has different representations in position and momentum spaces
operator position space momentum space

$$
\begin{array}{lll}
\hat{p} & -i \hbar \frac{\partial}{\partial x} & p
\end{array}
$$

$$
\hat{x} \quad x
$$

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed for example, the momentum operator in position space (the basis of the position operator) is given by, but in momentum space it becomes
similarly the position operator has different representations in position and
operator position space momentum space

$$
\hat{p} \quad-i \hbar \frac{\partial}{\partial x}
$$

$$
p
$$

$$
\hat{x} \quad x
$$

$$
i \hbar \frac{\partial}{\partial p}
$$ momentum spaces

up to now we have simply described the state of a system by its wavefunction in position space, $\Psi(x, t)$ which is the representation in the position basis, $\langle x \mid \mathcal{S}(t)\rangle$

Operators in different bases

Just as for a vector, an operator's representation depends on the basis in which it is expressed for example, the momentum operator in position space (the basis of the position operator) is given by, but in momentum space it becomes
similarly the position operator has different representations in position and momentum spaces
up to now we have simply described the state of a system by its wavefunction in position space, $\Psi(x, t)$ which is the representation in the position basis, $\langle x \mid \mathcal{S}(t)\rangle$
this is convenient and will continue to be used but it is important to remember that it is just one possible representation of the state of the system in Hilbert space

Dirac notation

Dirac notation

- Review of "bra-ket" notation

Dirac notation

- Review of "bra-ket" notation
- Subtleties of Dirac notation

Dirac notation

- Review of "bra-ket" notation
- Subtleties of Dirac notation
- All about operators

Dirac notation

- Review of "bra-ket" notation
- Subtleties of Dirac notation
- All about operators
- Changing bases

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products
integral bra-ket

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products

	integral	bra-ket
ket	$\psi(x)$	$\|\psi\rangle$

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products

	integral	bra-ket
ket	$\psi(x)$	$\|\psi\rangle$
bra	$\psi^{*}(x)$	$\langle\psi\|$

complex conjugate is implicit

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products

	integral	bra-ket
ket	$\psi(x)$	$\|\psi\rangle$
bra	$\psi^{*}(x)$	$\langle\psi\| \quad$ complex conjugate is implicit
normalization	$\int \psi^{*}(x) \psi(x) d x=1$	$\langle\psi \mid \psi\rangle=1$

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products

	integral	bra-ket
ket	$\psi(x)$	$\|\psi\rangle$
bra	$\psi^{*}(x)$	$\langle\psi\| \quad$ complex conjugate is implicit
normalization	$\int \psi^{*}(x) \psi(x) d x=1$	$\langle\psi \mid \psi\rangle=1$
expectation value	$\int \psi^{*} Q \psi d x$	$\langle\psi \mid Q \psi\rangle \quad$ operator is applied to the right

Dirac bra-ket notation review

Recall that we introduced the Dirac "bra-ket" notation as a simplifying notation for wavefunctions and inner products

	integral	bra-ket
ket	$\psi(x)$	$\|\psi\rangle$
bra	$\psi^{*}(x)$	$\langle\psi\| \quad$ complex conjugate is implicit
normalization	$\int \psi^{*}(x) \psi(x) d x=1$	$\langle\psi \mid \psi\rangle=1$
expectation value	$\int \psi^{*} Q \psi d x$	$\langle\psi \mid Q \psi\rangle \quad$ operator is applied to the right
there are more subtle aspects of this notation which we will discuss now		

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a

$$
\langle f|=\int f^{*}[\cdots] d x
$$ vector to its right, but produces a number instead

In functional space, it is an integral

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a

$$
\langle f|=\int f^{*}[\cdots] d x
$$ vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector

$$
\begin{aligned}
\langle f| & =\int f^{*}[\cdots] d x \\
|\alpha\rangle & =\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
\end{aligned}
$$

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector

$$
\begin{aligned}
\langle f| & =\int f^{*}[\cdots] d x \\
|\alpha\rangle & =\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
\end{aligned}
$$

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector

$$
\begin{aligned}
& \langle f|=\int f^{*}[\cdots] d x \\
& |\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \langle\alpha|=\left(\begin{array}{cccc}
a_{1}^{*} & a_{2}^{*} & \cdots & a_{n}^{*}
\end{array}\right)
\end{aligned}
$$

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector and the collection of bras is called dual space

$$
\begin{aligned}
& \langle f|=\int f^{*}[\cdots] d x \\
& |\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \langle\alpha|=\left(\begin{array}{cccc}
a_{1}^{*} & a_{2}^{*} & \cdots & a_{n}^{*}
\end{array}\right)
\end{aligned}
$$

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector and the collection of bras is called dual space
this formalism permits us to make a projection operator, which picks out the projection of a vector onto one of the basis vectors

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector and the collection of bras is called dual space
this formalism permits us to make a projection operator, which picks out the projection of a vector onto one of the basis vectors

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector and the collection of bras is called dual space
this formalism permits us to make a projection operator, which picks out the projection of a vector onto one of the basis vectors

$$
\begin{aligned}
& \langle f|=\int f^{*}[\cdots] d x \\
& |\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \langle\alpha|=\left(\begin{array}{llll}
a_{1}^{*} & a_{2}^{*} & \cdots & a_{n}^{*}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{P} & \equiv|\alpha\rangle\langle\alpha| \\
\hat{P}|\beta\rangle & =|\alpha\rangle\langle\alpha||\beta\rangle
\end{aligned}
$$

More on Dirac notation

In the Dirac formalism, the ket, $|\alpha\rangle$, is simply a vector, however the bra, $\langle\alpha|$, is really a linear function of vectors in that it has an effect on the vector
in analogy to an operator, which acts on a vector to its right and produces another vector, a bra acts on a vector to its right, but produces a number instead

In functional space, it is an integral
In finite-dimensional space the ket is a column vector and the bra is a row vector and the collection of bras is called dual space
this formalism permits us to make a projection operator, which picks out the projection of a vector onto one of the basis vectors

$$
\begin{aligned}
& \langle f|=\int f^{*}[\cdots] d x \\
& |\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \langle\alpha|=\left(\begin{array}{cccc}
a_{1}^{*} & a_{2}^{*} & \cdots & a_{n}^{*}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{P} & \equiv|\alpha\rangle\langle\alpha| \\
\hat{P}|\beta\rangle & =|\alpha\rangle\langle\alpha||\beta\rangle=\langle\alpha \mid \beta\rangle|\alpha\rangle
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors

$$
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| \equiv 1
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors

$$
\begin{gathered}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle
\end{gathered}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right)
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right)
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

an operator takes a vector in Hilbert space and transforms it to a new vector in the same space

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

an operator takes a vector in Hilbert space and transforms it to a new vector in the same space

$$
\hat{Q}|\alpha\rangle=|\beta\rangle
$$

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

an operator takes a vector in Hilbert space and transforms it to a new vector in the same space

$$
\hat{Q}|\alpha\rangle=|\beta\rangle
$$

the sum of two operators is defined as

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

an operator takes a vector in Hilbert space and transforms it to a new vector in the same space

$$
\hat{Q}|\alpha\rangle=|\beta\rangle
$$

$$
(\hat{Q}+\hat{R})|\alpha\rangle=\hat{Q}|\alpha\rangle+\hat{R}|\alpha\rangle
$$

the sum of two operators is defined as

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

an operator takes a vector in Hilbert space and transforms it to a new vector in the same space

$$
\hat{Q}|\alpha\rangle=|\beta\rangle
$$

$$
(\hat{Q}+\hat{R})|\alpha\rangle=\hat{Q}|\alpha\rangle+\hat{R}|\alpha\rangle
$$

the sum of two operators is defined as
the product of two operators is dependent on order

A few words about operators

In the same way, we can construct the identity operator for a discrete basis set of vectors
similarly for a continuous basis set, such as the eigenfunctions of \hat{x}, we have and the identity operator becomes

$$
\begin{aligned}
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| & \equiv 1 \\
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle & =\sum_{n} a_{n}\left|e_{n}\right\rangle=|\alpha\rangle \\
\left\langle e_{z} \mid e_{z^{\prime}}\right\rangle & =\delta\left(z-z^{\prime}\right) \\
\int d z\left|e_{z}\right\rangle\left\langle e_{z^{\prime}}\right| & =1
\end{aligned}
$$

an operator takes a vector in Hilbert space and transforms it to a new vector in the same space

$$
\begin{aligned}
\hat{Q}|\alpha\rangle & =|\beta\rangle \\
(\hat{Q}+\hat{R})|\alpha\rangle & =\hat{Q}|\alpha\rangle+\hat{R}|\alpha\rangle
\end{aligned}
$$

the sum of two operators is defined as
the product of two operators is dependent on order

$$
\hat{Q} \hat{R}|\alpha\rangle=\hat{Q}(\hat{R}|\alpha\rangle)
$$

Functions of operators

It is also possible to have functions of operators, that is, combinations of products and sums of operators which are often defined by power series

Functions of operators

It is also possible to have functions of operators, that is, combinations of products and sums of operators which are often defined by power series

$$
e^{\hat{Q}} \equiv 1+\hat{Q}+\frac{1}{2} \hat{Q}^{2}+\frac{1}{3!} \hat{Q}^{3}+\cdots
$$

Functions of operators

It is also possible to have functions of operators, that is, combinations of products and sums of operators which are often defined by power series

$$
\begin{aligned}
e^{\hat{Q}} & \equiv 1+\hat{Q}+\frac{1}{2} \hat{Q}^{2}+\frac{1}{3!} \hat{Q}^{3}+\cdots \\
\frac{1}{1-\hat{Q}} & \equiv 1+\hat{Q}+\hat{Q}^{2}+\hat{Q}^{3}+\hat{Q}^{4}+\cdots
\end{aligned}
$$

Functions of operators

It is also possible to have functions of operators, that is, combinations of products and sums of operators which are often defined by power series

$$
\begin{aligned}
e^{\hat{Q}} & \equiv 1+\hat{Q}+\frac{1}{2} \hat{Q}^{2}+\frac{1}{3!} \hat{Q}^{3}+\cdots \\
\frac{1}{1-\hat{Q}} & \equiv 1+\hat{Q}+\hat{Q}^{2}+\hat{Q}^{3}+\hat{Q}^{4}+\cdots \\
\ln (1+\hat{Q}) & \equiv \hat{Q}-\frac{1}{2} \hat{Q}^{2}+\frac{1}{3} \hat{Q}^{3}-\frac{1}{4} \hat{Q}^{4}+\cdots
\end{aligned}
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far:

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position,

$$
1=\int d x|x\rangle\langle x|
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum,

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
|\mathcal{S}(t)\rangle=\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
\begin{aligned}
|\mathcal{S}(t)\rangle & =\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle \\
|\mathcal{S}(t)\rangle & =\int d p|p\rangle\langle p \mid \mathcal{S}(t)\rangle
\end{aligned}
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
\begin{aligned}
|\mathcal{S}(t)\rangle & =\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle \\
|\mathcal{S}(t)\rangle & =\int d p|p\rangle\langle p \mid \mathcal{S}(t)\rangle \\
|\mathcal{S}(t)\rangle & =\sum_{n}|n\rangle\langle n \mid \mathcal{S}(t)\rangle
\end{aligned}
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
\begin{aligned}
|\mathcal{S}(t)\rangle & =\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle \equiv \int \Psi(x, t)|x\rangle d x \\
|\mathcal{S}(t)\rangle & =\int d p|p\rangle\langle p \mid \mathcal{S}(t)\rangle \\
|\mathcal{S}(t)\rangle & =\sum_{n}|n\rangle\langle n \mid \mathcal{S}(t)\rangle
\end{aligned}
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
\begin{aligned}
|\mathcal{S}(t)\rangle & =\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle \equiv \int \Psi(x, t)|x\rangle d x \\
|\mathcal{S}(t)\rangle & =\int d p|p\rangle\langle p \mid \mathcal{S}(t)\rangle \equiv \int \Phi(p, t)|p\rangle d p \\
|\mathcal{S}(t)\rangle & =\sum_{n}|n\rangle\langle n \mid \mathcal{S}(t)\rangle
\end{aligned}
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
\begin{aligned}
|\mathcal{S}(t)\rangle & =\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle \equiv \int \Psi(x, t)|x\rangle d x \\
|\mathcal{S}(t)\rangle & =\int d p|p\rangle\langle p \mid \mathcal{S}(t)\rangle \equiv \int \Phi(p, t)|p\rangle d p \\
|\mathcal{S}(t)\rangle & =\sum_{n}|n\rangle\langle n \mid \mathcal{S}(t)\rangle \equiv \sum_{n} c_{n}(t)|n\rangle
\end{aligned}
$$

Changing bases in Dirac notation

Dirac notation frees us for working in any particular basis so that we can write the identity operator in any basis we have discussed so far: position, momentum, or energy

$$
1=\int d x|x\rangle\langle x|=\int d p|p\rangle\langle p|=\sum|n\rangle\langle n|
$$

if each of these identity operators acts on the general state vector $|\mathcal{S}(t)\rangle$, we get

$$
\begin{aligned}
|\mathcal{S}(t)\rangle & =\int d x|x\rangle\langle x \mid \mathcal{S}(t)\rangle \equiv \int \Psi(x, t)|x\rangle d x \\
|\mathcal{S}(t)\rangle & =\int d p|p\rangle\langle p \mid \mathcal{S}(t)\rangle \equiv \int \Phi(p, t)|p\rangle d p \\
|\mathcal{S}(t)\rangle & =\sum_{n}|n\rangle\langle n \mid \mathcal{S}(t)\rangle \equiv \sum_{n} c_{n}(t)|n\rangle
\end{aligned}
$$

where the position, momentum and energy eigenvectors are the components of the $|\mathcal{S}(t)\rangle$ in their respective spaces

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\hat{x} \longrightarrow x
$$

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\hat{x} \longrightarrow x
$$

while in the momentum basis it becomes

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is
while in the momentum basis it becomes

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set consider the operation of \hat{x} on the state ket $|\mathcal{S}(t)\rangle$

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set consider the operation of \hat{x} on the state ket $|\mathcal{S}(t)\rangle$ in the position basis, it is expressed as

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set consider the operation of \hat{x} on the state ket $|\mathcal{S}(t)\rangle$ in the position basis, it is expressed as

$$
\langle x| \hat{x}|\mathcal{S}(t)\rangle=x \Psi(x, t)
$$

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set consider the operation of \hat{x} on the state ket $|\mathcal{S}(t)\rangle$ in the position basis, it is expressed as the action of

$$
\langle x| \hat{x}|\mathcal{S}(t)\rangle=x \Psi(x, t)
$$ the position operator in the x basis

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set consider the operation of \hat{x} on the state ket $|\mathcal{S}(t)\rangle$ in the position basis, it is expressed as the action of

$$
\langle x| \hat{x}|\mathcal{S}(t)\rangle=x \Psi(x, t)
$$

the position operator in the x basis
while in the momentum basis, it is the action of the position operator in the p basis

Operator transformations

The form of an operator, just like a wave function, depends on the basis under which it is represented
the position operator in the position basis is

$$
\begin{aligned}
& \hat{x} \longrightarrow x \\
& \hat{x} \longrightarrow i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

Dirac notation allows us to abstract the action of the operator and then express it in any basis desired by taking an inner product with the appropriate basis set consider the operation of \hat{x} on the state ket $|\mathcal{S}(t)\rangle$ in the position basis, it is expressed as the action of the position operator in the x basis
while in the momentum basis, it is the action of the position operator in the p basis

$$
\langle x| \hat{x}|\mathcal{S}(t)\rangle=x \Psi(x, t)
$$

$$
\langle p| \hat{x}|\mathcal{S}(t)\rangle=i \hbar \frac{\partial \Phi(p, t)}{\partial p}
$$

