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Harmonic oscillator

The classical harmonic oscillator is governed by
Hooke’s Law

the solution to this frictionless system is

and the potential energy is

The harmonic oscillator is an excellent first approx-
imation to many more complex potentials found in
Nature as long as the amplitude of the motion is
small. From the Taylor expansion about x0 we get
k = V ′′(x0)

V (x) = V (x0)+((((
(((V ′(x0)(x − x0) + 1

2V
′′(x0)(x − x0)2 + · · ·

F (x) = −kx = m
d2x

dt2

x(t) = A sin(ωt) + B cos(ωt)

ω ≡
√

k/m

V (x) = 1
2kx

2

V(x)

xxo
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Quantum harmonic oscillator

The potential which needs to be solved is
written in terms of the frequency instead of
the spring constant.

The Schrödinger equation becomes

In order to solve this using the algebraic
method and ladder operators we rewrite the
Schrödinger equation. With the Hamilto-
nian being

We now define two operators a±

V (x) =
1

2
mω2x2

Eψ = − ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ

Eψ =
1

2m

[
p2 + (mωx)2

]
ψ

Ĥ =
1

2m

[
p2 + (mωx)2

]
a± ≡

1√
2~mω

(∓ip + mωx)

a−a+ =
1

2~mω
(ip + mωx)(−ip + mωx) =

1

2~mω
[
p2 + (mωx)2 − imω(xp − px)

]
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Commutators

a−a+ =
1

~ω
1

2m

[
p2 + (mωx)2 − imω(xp − px)

]

x , p =
~
i

d

dx

The a± operators “almost” factor the
Hamiltonian, except for the last term, which
would be equal to zero classically

however, because x and p are operators in
quantum mechanics, they do not commute

if [A,B] is defined as the “commutator” of
two operators.

For x and p it can be computed computed
by applying it to a test function f (x)

[x , p] = i~

xp − px = x

(
~
i

d

dx

)
−
(
~
i

d

dx

)
x 6= 0

[A,B] ≡ AB − BA

[x , p]f (x)

=

(
x
~
i

d

dx
f (x)− ~

i

d

dx
xf (x)

)

=
~
i

(
�
��x
df

dx

−
�
��x
df

dx
− f

)

= i~f

a−a+ =
1

~ω
1

2m

[
p2 + (mωx)2 − imω[x , p]

]
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“Factoring” the Hamiltonian

a−a+ =
1

~ω
1

2m

[
p2 + (mωx)2 − imω[x , p]

]

=
1

~ω
Ĥ − i

2~
i~ =

1

~ω
Ĥ +

1

2

Using the commutator, we can rewrite the
product a−a+

and the Hamiltonian becomes Ĥ = ~ω
(
a−a+ −

1

2

)
=

(
a+a− +

1

2

)
Note that if we change the order of a+ and a− we have

a+a− =
1

~ω
1

2m

[
p2 + (mωx)2 − imω[p, x ]

]
=

1

~ω
Ĥ − i

2~
(−i~) =

1

~ω
Ĥ − 1

2

The commutator of a− and a+ is then

The Schrödinger equation for the harmonic
oscillator can now be written

[a−, a+] =

(
�
�
�1

~ω
Ĥ +

1

2

)
−
(
�
�
�1

~ω
Ĥ − 1

2

)
= 1

Eψ = ~ω
(
a±a∓ ±

1

2

)
ψ
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Ĥ − 1

2

The commutator of a− and a+ is then

The Schrödinger equation for the harmonic
oscillator can now be written

[a−, a+] =

(
�
�
�1

~ω
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Ĥ − i

2~
(−i~) =

1

~ω
Ĥ − 1

2

The commutator of a− and a+ is then

The Schrödinger equation for the harmonic
oscillator can now be written

[a−, a+] =

(
�
�
�1

~ω
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Ĥ − i

2~
i~ =

1

~ω
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Ĥ − i

2~
i~ =

1

~ω
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Harmonic oscillator - algebraic solution

• Generating new solutions recursively

• Raising and lowering operators

• The ground state

• Quantum oscillator energies
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Solving the Schrödinger equation

Eψ = Ĥψ = ~ω
(
a±a∓ ±

1

2

)
ψ

If ψ satisfies the Schrödinger equation
with energy E , then what about a+ψ?

Using the commutator

[a−, a+] = 1

= a−a+ − a+a−

and since

Ĥ = ~ω
(
a+a− +

1

2

)

Ĥ(a+ψ) = (E + ~ω)(a+ψ)

Ĥ(a+ψ) = ~ω
(
a+a− +

1

2

)
(a+ψ)

= ~ω
(
a+a−a+ +

1

2
a+

)
ψ

= ~ωa+
(
a−a+ +

1

2

)
ψ

= a+

[
~ω
(
a+a− + 1 +

1

2

)
ψ

]
= a+(Ĥ + ~ω)ψ = a+(E + ~ω)ψ

a+ψ also satisfies the Schrödinger equation, but
with “energy” E + ~ω!
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= a+(Ĥ + ~ω)ψ = a+(E + ~ω)ψ

a+ψ also satisfies the Schrödinger equation, but
with “energy” E + ~ω!

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I Harmonic oscillator - algebraic solution



Solving the Schrödinger equation

Eψ = Ĥψ = ~ω
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Ĥ = ~ω
(
a+a− +

1

2

)

Ĥ(a+ψ) = (E + ~ω)(a+ψ)
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Ĥ(a+ψ) = ~ω
(
a+a− +

1

2

)
(a+ψ)

= ~ω
(
a+a−a+ +

1

2
a+

)
ψ

= ~ωa+
(
a−a+ +

1

2

)
ψ

= a+

[
~ω
(
a+a− + 1 +

1

2

)
ψ

]
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Ĥ(a−ψ) = ~ω
(
a−a+ −

1

2

)
(a−ψ)

= ~ωa−
(
a+a− −

1

2

)
ψ

= a−

[
~ω
(
a−a+ − 1− 1

2

)
ψ

]
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= a−(Ĥ − ~ω)ψ = a−(E − ~ω)ψ
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Ĥ(a−ψ) = ~ω
(
a−a+ −

1

2

)
(a−ψ)

= ~ωa−
(
a+a− −

1

2

)
ψ

= a−

[
~ω
(
a−a+ − 1− 1

2

)
ψ

]
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Ĥ(a+ψ) = (E + ~ω)(a+ψ)
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Ĥ(a+ψ) = (E + ~ω)(a+ψ)
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= a−(Ĥ − ~ω)ψ = a−(E − ~ω)ψ
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Ĥ(a+ψ) = (E + ~ω)(a+ψ)

Ĥ(a−ψ) = ~ω
(
a−a+ −

1

2

)
(a−ψ)

= ~ωa−
(
a+a− −

1

2

)
ψ

= a−

[
~ω
(
a−a+ − 1− 1

2

)
ψ

]
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Raising and lowering operators

The operators a± are called “raising” and “lowering” operators, respectively, and provide a
recursive solution to the harmonic oscillator potential.

start with the nth state of the harmonic os-
cillator

apply the raising operator a+ and get a so-
lution with a bit higher energy

this must be the (n + 1)th state

similarly with the lowering operator a−.

Ĥψn = Enψn

Ĥa+ψn = (En + ~ω)a+ψn

= En+1a+ψn

Ĥa−ψn = (En − ~ω)a−ψn

= En−1a−ψn

a+ψn = ψn+1 a−ψn = ψn−1
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Ĥa−ψn = (En − ~ω)a−ψn

= En−1a−ψn

a+ψn = ψn+1 a−ψn = ψn−1

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I Harmonic oscillator - algebraic solution



Raising and lowering operators

The operators a± are called “raising” and “lowering” operators, respectively, and provide a
recursive solution to the harmonic oscillator potential.

start with the nth state of the harmonic os-
cillator

apply the raising operator a+

and get a so-
lution with a bit higher energy

this must be the (n + 1)th state

similarly with the lowering operator a−.
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Lowest energy wavefunction

With these two operators we have a prescrip-
tion for generating all the wavefunctions
which solve the harmonic oscillator once one
wavefunction is known.

Consider the lowest energy state of the sys-
tem, ψ0 with energy E0 < ~ω.

If we apply the lowering operator, a−, we
cannot generate a valid wavefunction whose
energy is less than zero, thus

This is a sort of “boundary condition” which
defines a differential equation.

a+ψn = ψn+1

a−ψn = ψn−1

Ĥψ0 = E0ψ0

a−ψ0 ≡ 0

√
1

2~mω

(
~
d

dx
+ mωx

)
ψ0 = 0
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Ĥψ0 = E0ψ0

a−ψ0 ≡ 0

√
1

2~mω

(
~
d

dx
+ mωx

)
ψ0 = 0

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I Harmonic oscillator - algebraic solution



Lowest energy wavefunction

With these two operators we have a prescrip-
tion for generating all the wavefunctions
which solve the harmonic oscillator once one
wavefunction is known.

Consider the lowest energy state of the sys-
tem, ψ0 with energy E0 < ~ω.

If we apply the lowering operator, a−, we
cannot generate a valid wavefunction whose
energy is less than zero, thus

This is a sort of “boundary condition” which
defines a differential equation.

a+ψn = ψn+1

a−ψn = ψn−1
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cannot generate a valid wavefunction whose
energy is less than zero, thus

This is a sort of “boundary condition” which
defines a differential equation.

a+ψn = ψn+1

a−ψn = ψn−1

Ĥψ0 = E0ψ0

a−ψ0 ≡ 0

√
1

2~mω

(
~
d

dx
+ mωx

)
ψ0 = 0
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The ground state

√
1

2~mω

(
~
d

dx
+ mωx

)
ψ0 = 0

dψ0

dx
= −mω

~
xψ0

dψ0

ψ0
= −mω

~
xdx∫

dψ0

ψ0
= −mω

~

∫
xdx

lnψ0 = −mω

2~
x2 + C

ψ0(x) = Ae−(mω/2~)x2

This equation can be rearranged to give

which is solvable by direct integration

The ground state solution is thus

This can be normalized

1 = |A|2
∫ +∞

−∞
e−(mω/~)x2 dx = |A|2

√
π~
mω

ψ0(x) =
(mω
π~

)1/4
e−(mω/2~)x2
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Harmonic oscillator energies

The energy of the lowest state can be obtained by
applying the Hamiltonian in the form of the raising
and lowering operators.

but a−ψ0 ≡ 0

The ground state energy is greater than zero.

The energy of the lowest state is always larger than
the lowest energy of the potential well in which the
particle resides.

This general phenomenon is called zero point mo-
tion.

Ĥ = ~ω
(
a+a− +

1

2

)

E0ψ0 = Ĥψ0

= ~ω
(
a+a− +

1

2

)
ψ0

= ~ω
(
��
��a+a−ψ0 +

1

2
ψ0

)
= ~ω

1

2
ψ0

E0=
1

2
~ω
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= ~ω
(
a+a− +

1

2

)
ψ0

= ~ω
(
��

��a+a−ψ0 +
1

2
ψ0

)
= ~ω

1

2
ψ0

E0=
1

2
~ω

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I Harmonic oscillator - algebraic solution



Harmonic oscillator energies

The energy of the lowest state can be obtained by
applying the Hamiltonian in the form of the raising
and lowering operators.

but a−ψ0 ≡ 0

The ground state energy is greater than zero.

The energy of the lowest state is always larger than
the lowest energy of the potential well in which the
particle resides.

This general phenomenon is called zero point mo-
tion.
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