Results from NOvA

Daniel M. Kaplan (Illinois Institute of Technology) for the NOvA Collaboration

NuFact 2021 Sept. 6th 2021

Outline

- Physics goals
- How NOvA works
- Oscillation measurements
- Cross-section measurements
- Sterile-neutrino search
- "Exotics" (astrophysics & BSM) studies
- Test Beam program
- Joint analysis with T2K
- Summary & conclusions

Main Goals

- NOvA: long-baseline neutrino oscillation experiment (Fermilab to northern Minnesota, 810 km)
- Addresses open questions:
 - sign of Δm²₃₂: Normal or Inverted Hierarchy?
 - o **value** of θ_{23} : Maximal Mixing $(v_{11}/v_{\tau} \text{ symmetry})$?
 - does neutrino oscillation violate CP?

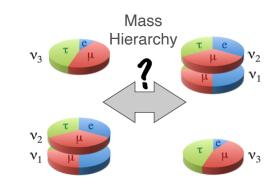
...via ν_u , $\overline{\nu}_u$ disappearance & ν_e , $\overline{\nu}_e$ appearance

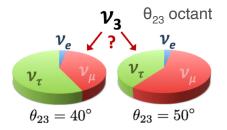
- Also rich broader physics program:
 - neutrino cross-section measurements
 - search for **sterile neutrinos**

investigation of astrophysical and BSM phenomena

also "Modeling issues in NOvA" and "NuMI beam modeling"

Greg Pawloski, joint WG1&2 talk Yiding Yu poster D. M. Kaplan NuFact 2021

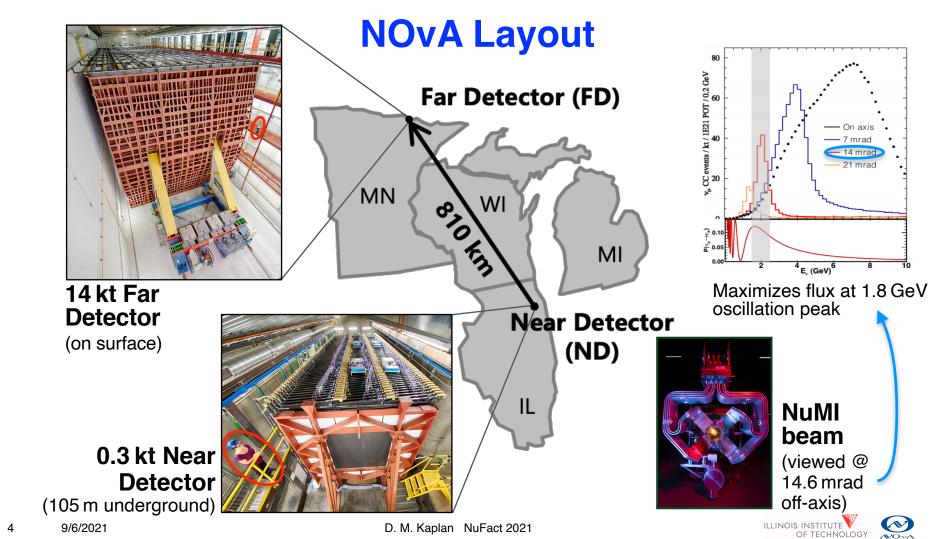

Leo Aliaga, Bryan Ramson

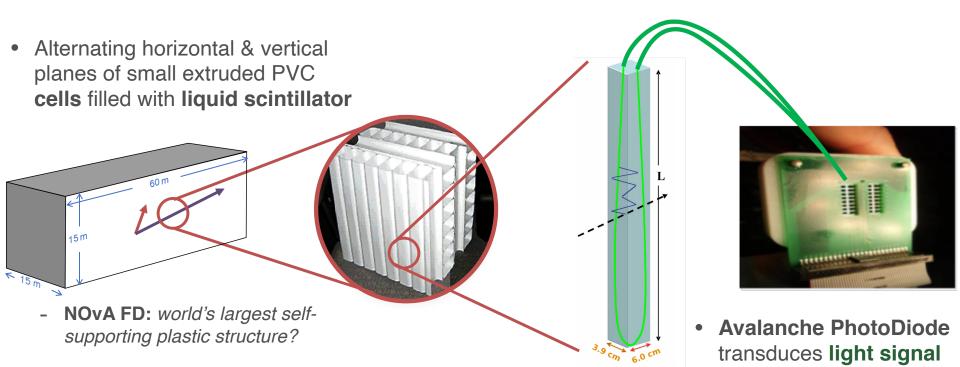

Jeremy Hewes WG5 talk

WG2 talks, Wenjie Wu poster

7 NOvA NuFact presentations:

Matt Strait WG1 talk



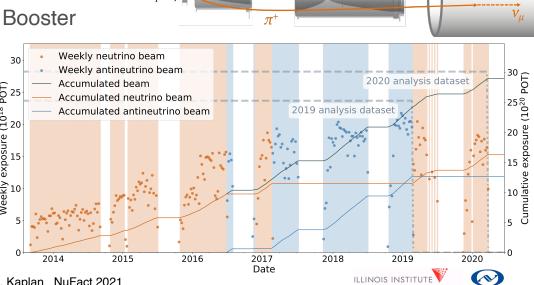

$$\delta_{\rm CP} = ?$$

NOvA Detectors: Construction & Principle

- Charged particles deposit energy
 - → scintillation & Cherenkov light, collected by wavelength-shifting fibers

to electrical pulse

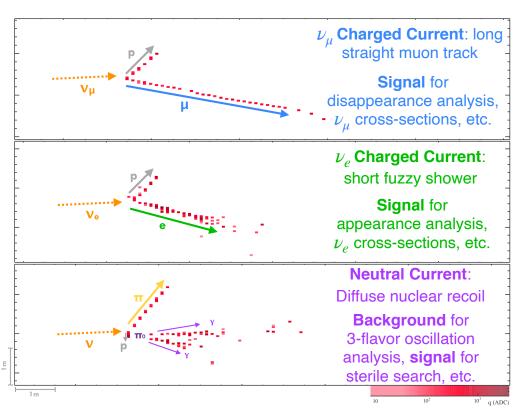
NuMI Beam


World's most intense accelerator neutrino beam:

typical proton-beam power 680 kW (with peaks > 800 kW, e.g., 843 kW for an hour on 15 June)

- Neutrinos/antineutrinos selected via focusing-horn magnetic-field direction
- +54% increase in **neutrino** exposure over 2019 analysis
- **Upgrades** in place for **1 MW**, early PIP-II Booster

improvements should allow >900 kW via faster cycle

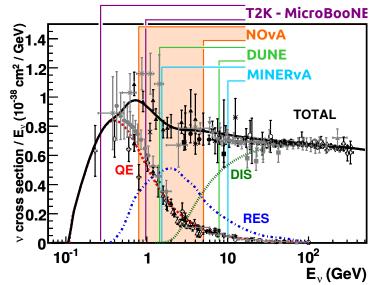

Fermilab Accelerator Complex

Focusing Horns

Target

Decay Pipe

Event Topologies


- Use Machine Learning techniques to select and classify neutrino interactions:
 - convolutional neural network(CNN)
- Excellent cosmic-ray rejection using CNN and Boosted Decision Trees (BDTs)

Simulation Chain

- Geant4 simulation of beam transport
- Neutrino flux:

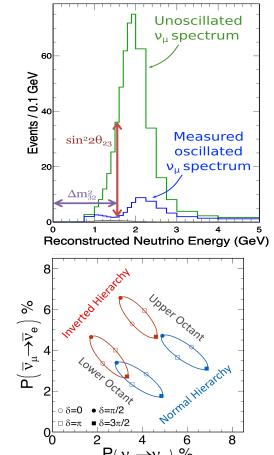
- Target Focusing Horns Decay Pipe π
- →~10% normalization uncertainty (MINERvA technique, Phys.Rev. D **94**, 092005)
- Neutrino interaction model: GENIE simulation tuned on NOvA ND and external data
 - NOvA: crossover region where multiple processes contribute
 - adjust MEC & FSI (GENIE 3)
- Geant4 simulation of detector response

Adapted from J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)

Measuring Neutrino Oscillation Parameters

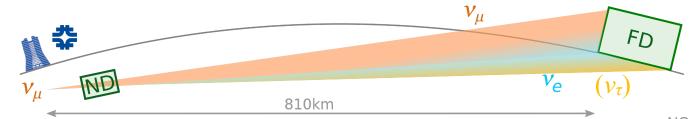
• ν_{μ} & $\overline{\nu}_{\mu}$ disappearance rates constrain $\sin^2 2\theta_{23}$, $|\Delta m_{32}^2|$:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \left(\cos^4(\theta_{13})\sin^2(2\theta_{23}) + \sin^2(2\theta_{13})\sin^2(\theta_{23})\right)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

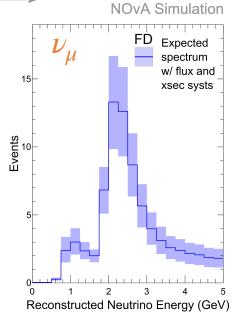

• $\nu_{\mu} \rightarrow \nu_{e} \& \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance rates constrain $\sin^{2}\theta_{23}$, $\Delta m_{32}^{2} \& \delta_{CP}$:

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$

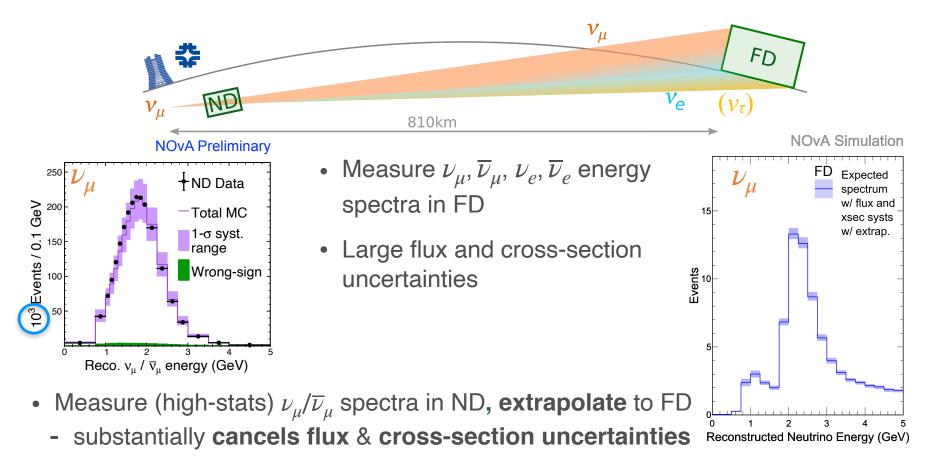
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$


$$\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

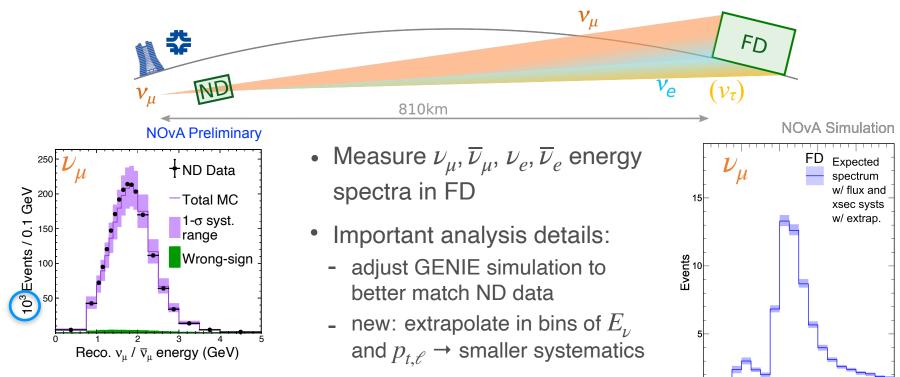
Simultaneous fit to ν & ν̄ appearance &
 disappearance spectra → optimal sensitivity



Minimizing Effects of Cross-Section Uncertainty



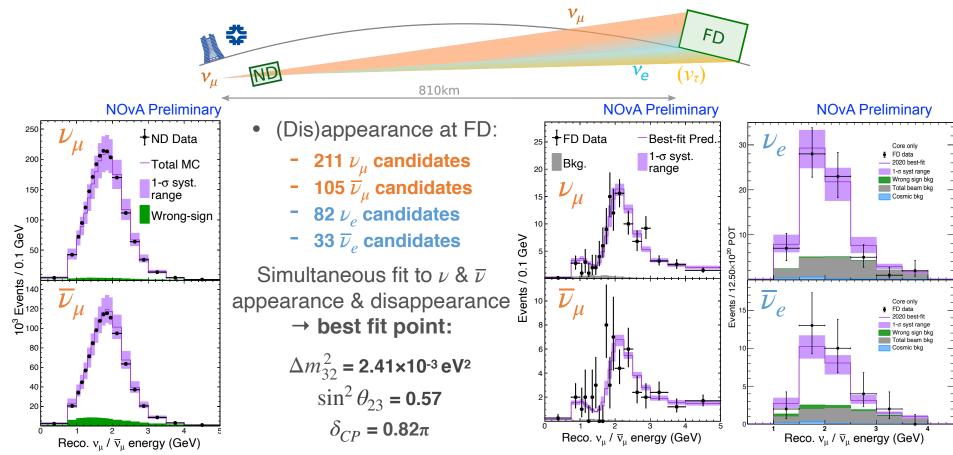
- Measure $\nu_{\mu}, \overline{\nu}_{\mu}, \, \nu_{e}, \overline{\nu}_{e}$ energy spectra in FD
- Large flux and cross-section uncertainties



10

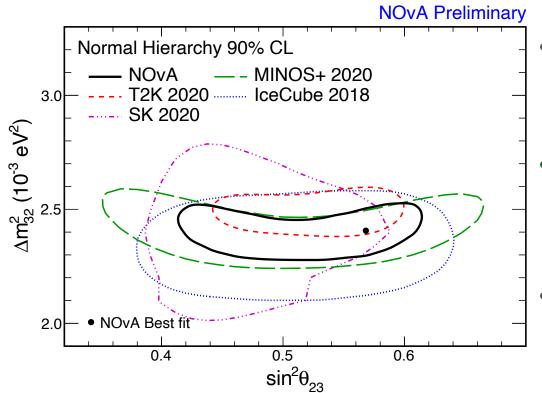
Minimizing Effects of Cross-Section Uncertainty

Minimizing Effects of Cross-Section Uncertainty


- Measure (high-stats) $\nu_{\mu}/\overline{\nu}_{\mu}$ spectra in ND, **extrapolate** to FD
 - substantially cancels flux & cross-section uncertainties

Reconstructed Neutrino Energy (GeV)

Oscillation Results



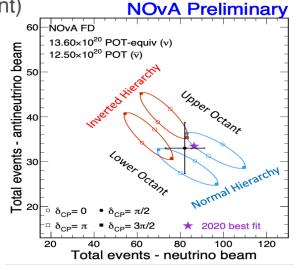
Oscillation Results

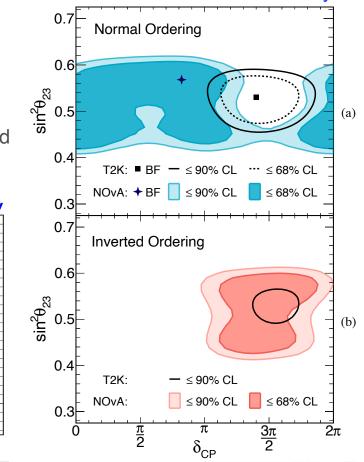
D. M. Kaplan NuFact 2021

 Statistical & systemic uncertainties via Feldman-Cousins (frequentist) approach

Precision measurements:

- $\Delta m_{32}^2 = 2.41 \pm 0.07 \times 10^{-3} \,\text{eV}^2$ (3%)
- $-\sin^2\theta_{23} = 0.57^{+0.03}_{-0.04}$ (6%)
- Best fit point: Normal Hierarchy and Upper Octant $(\theta_{23} > 45^{\circ})$

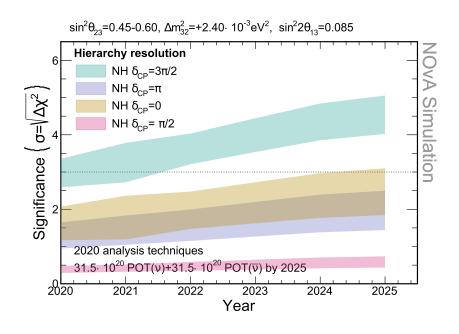


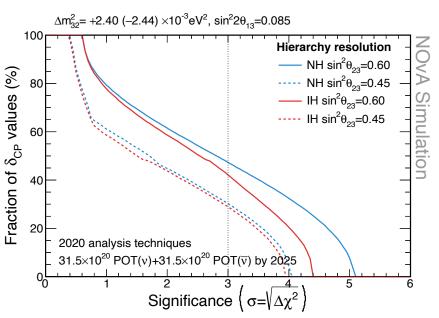

Oscillation Results

NOvA Preliminary

• Constraints on δ_{CP} :

- NH:
 - $\delta_{CP} = 3\pi/2$ disfavored at ~2 σ
 - o at 90% confidence level, entire range of δ_{CP} allowed
- IH: $\delta_{CP} = \pi/2$ disfavored at >3 σ
- tension (but consistent) with T2K
- we see no strong $\nu_e/\overline{\nu}_e$ asymmetry

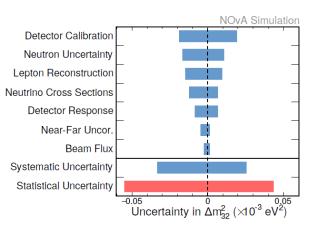


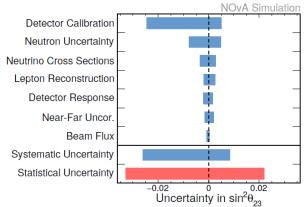


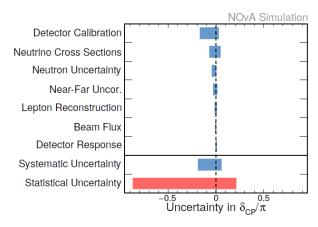
[T2K: Nature 580 (2020) 339]

Future Oscillation Reach

- Expect to run through 2026, accumulating > 6 x 10²¹ protons on target (POT)
- Could reach \geq 4 σ sensitivity to Mass Hierarchy, > 3 σ for 30–50% of δ_{CP} values
- Probe the majority of δ_{CP} values at $\geq 2\sigma$ level







15

Oscillation Parameter Uncertainties

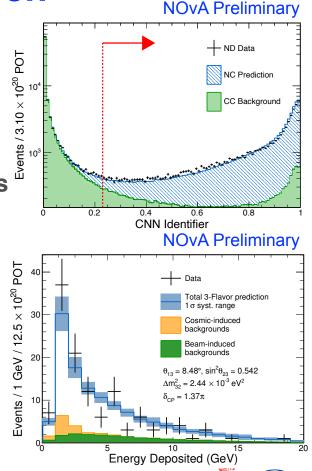
- **Leading** systematic: detector calibration uncertainty
- Subleading: neutron calibration uncertainty neutrino interaction model lepton reconstruction uncertainty

Depending on parameter being measured

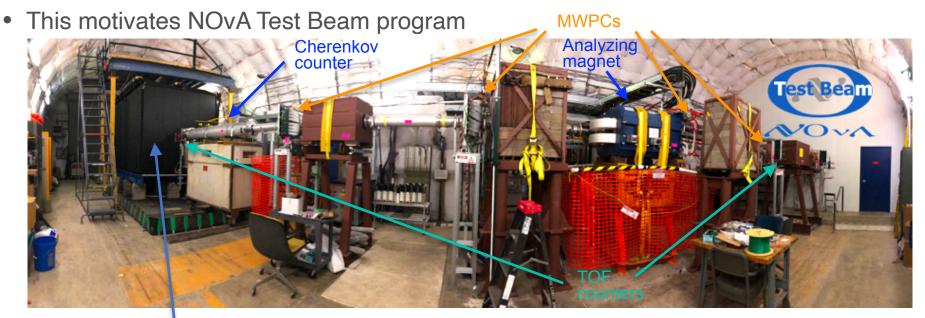
Neutrino Scattering & Oscillation

- Neutrino interaction model: an important oscillation systematic
 - ⇒ worth measuring neutrino scattering cross sections ourselves & valuable for future experiments (e.g., DUNE)
- Also valuable in itself: probe of interesting strong-interaction dynamics
- NOvA ND provides high-statistics neutrino-interaction samples
 - can make new, improved cross-section measurements
- Published so far:
 - Measurement of neutrino-induced neutral-current coherent π^0 production in the NOvA near detector, Phys. Rev. D **102** (2020) 012004
- Cross-section analyses (in progress) reported at this Workshop:
 - $(\overline{\nu}_{\mu})$ and $(\overline{\nu}_{e})$ charged-current (CC) inclusive cross sections
 - ν_{μ} CC with low hadronic activity ("MEC-enhanced")
 - ν and $\overline{\nu}$ scattering with final-state EM showers
 - ν + e elastic scattering

Studies of/Searches for Astro or BSM Phenomena


- Already (or soon to be) published in journals:
 - Extended search for supernova-like neutrinos in NOvA coincident with LIGO/Virgo detections, accepted by Phys. Rev. D, 2106.06035
 - Seasonal variation of multiple-muon cosmic ray air showers observed in the NOvA detector on the surface, Phys. Rev. D 104 (2021) 012014
 - Search for slow magnetic monopoles with the NOvA detector on the surface, Phys. Rev. D **103** (2021) 012007
 - Supernova neutrino detection in NOvA, JCAP 10 (2020) 014
 - Search for multimessenger signals in NOvA coincident with LIGO/Virgo detections, Phys. Rev. D 101 (2020) 112006
- Searches/studies in progress:
 - neutrino magnetic moment
 - magnetic monopoles
 - dark matter
 - *n*n oscillations

18


Sterile Neutrino Search

- Search for sterile-active mixing in 12.51 x 10²⁰ POT antineutrino sample obtained June 2016 – Feb 2019
 - LSND and MiniBooNE saw effects in antineutrinos
- Analysis looks for NC disappearance from ND to FD
- 1st result using long-baseline accelerator antineutrinos
 - 121 NC events observed, 122 ± 11 ± 15 expected
 - ⇒90% CL limits: θ_{24} < 25° and θ_{34} < 32° in 3+1 model (0.05eV² ≤ Δm_{41}^2 ≤ 0.5 eV²)
 - this analysis insensitive to larger Δm_{41}^2 (oscillations would occur within ND)
- Submitted for publication: arXiv:2106.04673

Test Beam Program

- Detector calibration: leading uncertainty in NOvA
 - important to reduce it as statistical errors shrink

mini-NOvA detector illuminated by narrow-band, particle-identified, momentumanalyzed charged-particle beam

Test Beam Program

- Data accumulated so far: thousands of identified electrons, protons, pions
- More running planned in next FNAL run cycle
- Planning possible DT (14 MeV) neutron-generator calibration as well

NOvA-T2K Joint Analysis

- Two most precise long-baseline oscillation measurements are NOvA's & T2K's
 - as we've seen, in some tension
- Desirable to perform joint fit
 - somewhat challenging due to differing approaches and models used
 - frequentist vs. Bayesian, GENIE vs. NEUT, etc...
- Joint NOvA–T2K working group analysis in progress
 - aiming for result in 2021–22

Summary

Updated oscillation results:

- among world's **most precise measurements** of:
 - $\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \,\text{eV}^2$
 - $\circ \sin^2 \theta_{23} = 0.57^{+0.03}_{-0.04}$
- exclude IH $\delta_{CP} = \pi/2$ at >3 σ and NH $\delta_{CP} = 3\pi/2$ at 2 σ
- **Cross-section** measurements
- Searches for/investigations of astro phenomena: monopoles, neutrinos in coincidence with gravitational-wave events, multi-muon cosmic-ray events,...

D. M. Kaplan NuFact 2021

- 1st long-baseline accelerator antineutrino sterile neutrino limits
- Test Beam in progress to improve calibration systematics
- See WG1, 2, and 5 NOvA talks and posters for more details

