# Muon Colliders, Neutrino Factories, and Results from the MICE Experiment

#### Daniel M. Kaplan









25th Conference on Application of Accelerators in Research and Industry Session TD-02: Emerging Accelerator Technologies Grapevine, TX 14 Aug. 2018

## Outline

- Muon accelerators, neutrino factories, and muon colliders
- Muon cooling
- MICE
- Conclusions





## Motivation for Muon Accelerators

- High-energy electron-positron colliders increasingly limited by unwanted radiative processes
- Heavier fundamental fermions i.e., muons offer an attractive way forward
  - if the muons can be efficiently cooled
- Muon storage rings could then serve as uniquely powerful l<sup>+</sup>l<sup>-</sup> colliders
- And the world's best neutrino sources
  - to probe beyond the 3v-mixing paradigm

D. M. Kaplan

• Cooled muon beams  $\rightarrow$  L.E.- $\mu$  sensitivity upgrades:

g – 2, µ2e, muonium (M) gravity, M– $\overline{M}$  conversion...



## NF and MC



• Strong similarities! (1st 3 stages of NF reusable in MC)

- both start with ~MW p beam on high-power tgt  $\rightarrow \pi \rightarrow \mu$ , then cool, accelerate, & store



**ILLINOIS INST** 

OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.ed D. M. Kaplan



## Muon Accelerator (partial) Timeline







## Muon Accelerator (partial) Timeline



D. M. Kaplan OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.ed

## **Muon Accelerator Technical Challenges**

I. High-power (up to 4 MW) p beam\* and target

- Hg jet feasible [MERIT@CERN, 2007]

2. Muon beam cooling in all 6 dimensions Unless LENINA Shown to KIMA Work

- $\mu$  unstable,  $\tau_{\mu} = 2.2 \ \mu s \Rightarrow$  must cool quickly!...
- 3. Rapid acceleration

D. M. Kaplan

- Linac-RLAs-(FFAGs)-RCS [EMMA@DL, 2011]
- 4. High storage-ring bending field (to maximize # cycles before decay) and small  $\beta_{\perp}$ , for high  $\mathcal{L}$ 
  - Solutions devised by MAP (FNAL), B ~ 10 T,  $\beta_{\perp}$  ~ 1 cm





e.g., SNS, ESS,

## Muon Cooling

• Physics of multi-TeV lepton collisions calls for  $\mathcal{L} \gtrsim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 



need factor ≥10<sup>6</sup> total 6D emittance reduction



## Muon Cooling

• Physics of multi-TeV lepton collisions calls for  $\mathcal{L} \gtrsim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 



- need factor ≥10<sup>6</sup> total 6D emittance reduction
  - simulation studies show most goals met or exceeded



D. M. Kaplan

TECHNOLOGY

Transforming Lives. Inventing the Future. www.iit.ed

Muon Colliders, Neutrino Factories, and MICE



CAARI 7/26/18

## How cool muons?

- Problem: Average lifetime at rest = 2.2 µs
- But established cooling methods (stochastic, electron, laser) take seconds to hours!

• What cooling method can work in  $\ll$  2.2 µs?





## Ionization Cooling

• Muons cool via dE/dx in low-Z medium:



#### How to cool in 6D?

- Work above ionization minimum to get negative feedback in p<sub>z</sub>?
- No ineffective due to straggling
  - $\Rightarrow$ cool longitudinally via <u>emittance exchange</u>:





#### • Cool $\varepsilon_{\perp}$ , exchange $\varepsilon_{\perp}$ & $\varepsilon_{\parallel} \rightarrow 6D$ cooling

Muon Colliders, Neutrino Factories, and MICE

D. M. Kaplan

Transforming Lives. Inventing the Future. www.iit.ec



CAARI 7/26/18

#### How to cool in 6D?

- Tricky beam dynamics: must handle dispersion, angular momentum, nonlinearity, chromaticity, & non-isochronous beam transport
- 3 types of solutions found viable in simulation:



#### How to cool in 6D?



- FOFO Snake can cool both signs at once but limited in  $\beta_{\perp,min} \Rightarrow$  best for initial 6D cooling
- R\_FOFO both vacuum-RF & pressurized versions
- HCC may be most compact

D. M. Kaplan

Performance limits of each not yet clear, nor which is most cost-effective



### "Beyond" 6D Cooling

- To reach ≤25 µm transverse emittance, must go beyond 6D cooling schemes shown above
- One approach (Palmer "Final Cooling"):
  - cool transversely
    with B ~ 30 T at
    low momentum
  - gives lower β
    & higher dE/dx:

 $\beta_{\perp} \sim \frac{p}{R}$ 

D. M. Kaplan

Transforming Lives. Inventing the Future. www.iit.e



 Lower-B options under study as well (Derbenev PIC, REmEx, lithium lenses)





### "Beyond" 6D Cooling

- To reach ≤25 µm transverse emittance, must go beyond 6D cooling schemes shown above
- One approach (Palmer "Final Cooling"):
  - cool transversely
    with B ~ 30 T at
    low momentum



 $\beta_{\perp} \sim \frac{p}{R}$ 

Transforming Lives. Inventing the Future. www.iit.e



 Lower-B options under study as well (Derbenev PIC, REmEx, lithium lenses)





### "Beyond" 6D Cooling

- To reach ≤25 µm transverse emittance, must go beyond 6D cooling schemes shown above
- One approach (Palmer "Final Cooling"):
  - cool transversely
    with B ~ 30 T at
    low momentum
  - gives lower β
    & higher dE/dx:

 $\beta_{\perp} \sim \frac{p}{R}$ 



 Lower-B options under study as well (Derbenev PIC, REmEx, lithium lenses)





#### Higgs Factory Cooling

- µ<sup>+</sup>µ<sup>-</sup> Higgs Factory requires exquisite energy precision:
  - use  $\mu^+\mu^- \rightarrow h$  s-channel resonance,  $dE/E \approx$  $0.003\% \approx \Gamma_h^{SM} = 4 \text{ MeV}$
  - $\Rightarrow$  omit final cooling
  - 10<sup>-6</sup> energy calib. via
    (g-2)<sub>µ</sub> spin precession!
  - measure Γ<sub>h</sub>, lineshape (& m<sub>h</sub>)
    via μ<sup>+</sup>μ<sup>-</sup> resonance scan
    - o the only way to do so!
      - and a key test of the SM





Output to Acceleration

Farget +

Decay

## MICE

- International Muon Ionization Cooling Experiment at UK's Rutherford Appleton Laboratory (RAL)
- Flexibility to test several absorber materials & optics schemes
  Image: scheme sch

SciFi solenoidal spectrometers measure emittance to 1‰ (muon by muon)

#### • Status: data-taking complete, analysis in progress







## MICE



OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu International collaboration of >100 scientists and engineers, from >30 institutions in 10 countries

> 3.5 x 10<sup>8</sup> triggers recorded



## Principles of MICE

- Cost-effective: use minimal cooling channel
  - one complete lattice cell  $\rightarrow \sim 10\%$  cooling effect

• in the end we built only a single absorber–focus-coil module →  $\sim$ 5% cooling effect

- Measure emittance with 0.1% precision
  - allows even small cooling effects near equilibrium emittance to be well measured

 $\Rightarrow$  need to measure muon beam one muon at a time

• Vary all parameters to explore full performance range, validate simulation tools





## Principles of MICE





#### **Principles of MICE**



#### • Quick tour:







#### • Quick tour:







Quic Spectro

Li

Focus Coils

ILLINOIS INSTITUTE OF TECHNOLOGY Transforming Lives.Inventing the Future.www.iit.edu

Muon Colliders, Neutrino Factories, and MICE

CAARI 7/26/18

ToF & Ckov Counters

KL & EMR

Time-of-Flight

(ToF) Counters

20 / 26

LIFT HOLE

0 0 ÊT HOLE 1-1/4-7

ASSY BD43010300 REP-N

WT356886

910305-01 HEN-N

#### Selected MICE Results...







## **Beam Characterization**

- Muon-beam emittance determined from measured individual-muon phase-space coordinates
  - 4D transverse phase-space of muons:  $(x, p_x, y, p_y)$
  - $(x, p_x, y, p_y) \sqrt[4]{|\Sigma_4 D|}$ → normalized RMS transverse emittance:

 $\Sigma_4$ : 4D covariance matrix of coordinates

Poincaré sections (note  $x-p_y \& y-p_x$ correlations due to solenoidal optics):

- give  $\varepsilon_n$  vs.  $p_z$  in typical ("3 mm") beam setting

D. M. Kaplan





 $\sigma_{xx}^2$ 



тс

 $p_y$ 

 $\mathcal{E}_n$ 

y

 $\sigma_{yy}^2$  ,

 $p_x$ 

T



 $p_x$ 

- Since we know *each muon's* coordinates, can compute individual-muon *amplitudes* 
  - 4D distance of each muon from beam centroid
  - more informative than emittance





CAARI 7/26/18

- Since we know *each muon's* coordinates, can compute individual-muon *amplitudes* 
  - 4D distance of each muon from beam centroid
  - more informative than emittance



• Other cooling indicators:

Transforming Lives. Inventing the Future. www.iit.e

- subemittance, fractional emittance, phase-space density, core volume
- only time for one today:  $e_9 \equiv \text{emittance of central}$ 9% of beam (1 $\sigma$  of 4D Gaussian beam)





- Other cooling indicators:
  - subemittance, fractional emittance, phase-space density, core volume
  - only time for one today:  $e_9 \equiv \text{emittance of central}$ 9% of beam (1 $\sigma$  of 4D Gaussian beam)





## Also – I<sup>st</sup> 6D cooling test:

- Aspects of 6D cooling / emittance exchange tested by inserting wedge absorbers in MICE
- MICE data with 45° polyethylene wedge:





### Conclusions

• 10<sup>21</sup> v/year Neutrino Factory feasible S. Chou Interim Inc., 201

S. Choubey *et al.* [IDS-NF collaboration], Interim Design Report, Nova Science Publishers, Inc., 2011, arXiv:1112.2853 [hep-ex]

- → world's best measurements of neutrino mixing parameters!
- High- $\mathcal{L}$  Muon Collider looks feasible
  - buildable as Neutrino Factory upgrade

D. M. Kaplan

- Higgs Factory could be important step on the way!
- First results from MICE validate efficacy of ionization cooling; more-complete results on the way
  - eliminate last in-principle obstacle to high-brightness muon accelerators

#### such machines can be designed & built with confidence



CAARI 7/26/18

#### Some MC/NF source material:

- Neutrino Factory Feasibility Study II report [S. Ozaki et al., eds, BNL-52623 (2001)]
- Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration [M. Alsharo'a et al., PRST Accel. Beams 6, 081001 (2003)]
- **Neutrino Factory and Beta Beam Experiments and Development** [C. Albright et al., arXiv:physics/0411123, www.aps.org/policy/reports/multidivisional/neutrino/upload/ Neutrino Factory and Beta Beam Experiments and Development Working Group.pdf (2004)]
- Recent innovations in muon beam cooling [R. P. Johnson et al., AIP Conf. Proc. 821, 405 (2006)]
- International Design Study for the Neutrino Factory, Interim Design Report [S. Choubey et al., arXiv:1112.2853]
- Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society [J.-P. Delahaye et al., eds., arXiv:1308.0494]
- Pressurized H<sub>2</sub> RF Cavities in Ionizing Beams and Magnetic Fields [M. Chung et al., PRL 111 (2013) 184802]
- Muon Colliders [R.B. Palmer, Rev. Accel. Sci. Tech. (RAST) 7 (2014) 137]
- Operation of normal-conducting RF cavities in multi-tesla magnetic fields for muon ionization cooling: a feasibility demonstration [D. Bowring et al., arXiv:1807.03473, submitted to PRL]
- The future prospects of muon colliders and neutrino factories [M. Boscolo, J.-P. Delahaye, M. Palmer, arXiv:1808.01858, submitted to RAST]
- map.fnal.gov; www.cap.bnl.gov/mumu/; mice.iit.edu

#### **JINST Special Issue on Muon Accelerators**

[iopscience.iop.org/journal/1748-0221/page/extraproc46]

D. M. Kaplan OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.ed

Muon Colliders, Neutrino Factories, and MICE

**Repository for final MAP** 

and MICE papers

CAARI 7/26/18

28 /