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Abstract: The provision of intense stored muon beams would allow the properties of neutrinos to be measured precisely and _
provide a route to multi-TeV lepton-antilepton collisions. The short muon lifetime makes it impossible to employ traditional cooling *Muon Collider:

techniques while maintaining the muon-beam intensity. lonization cooling, a process in which the muon beam is passed through a —CM energy up to ~10 TeV

g i . | o | "] | series of low-Z absorbers followed by accelerating RF cavities, is the proposed cooling technique. The international Muon —Luminosity > 1034 cm—2s-1

| lonization Cooling Experiment (MICE) collaboration has performed, at Rutherford Appleton Laboratory (UK), an initial —High luminosity requires cold muon beams
demor)stratlon of the ionization Coollng.prlnmple, by measuring the effect of low-Z absorber materials on a muon beam. Data o emittance reduction by factor ~106

taken in 2016 and 2017 are currently being analyzed. Initial results are presented.
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Liquid-hydrogen absorber: : - ‘ | N
(Japan, USA) The ratio of the downstream to upstream cumulative R

_Large ionization energy-loss rate (cooling) | |@mplitudes for two input beam configurations with nominal i '
—Low multiple scattering (heating) momenta of 140 MeV/c and nominal emittance of 6 (top) and | w S
—First prototype built and bench-tested 10 (bottom) mm. Cooling is observed where Ramp > 1,

TJ?(CUS-COH assembly: showing migration of muons from high to low amplitude.
| —)Superconducting magnets: Beam size expressed as 4-D transverse, normalized emittance

Two coils; up to 5 Tesla g4pN = *y[detZ .| / my
2.1= covariance matrix of muon ensemble in (X,y,px,py) space
Amplitude Ar=en ApT 21 Ay
A, = (v—<v)) distance of muon from beam center
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